![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6716 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | ffvelcdm 7085 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3141 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | fvelrnb 6953 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
7 | 6 | biimpd 228 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
8 | nfra1 3276 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
9 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
10 | rsp 3239 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
11 | eleq1 2816 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
12 | 11 | biimpcd 248 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
14 | 8, 9, 13 | rexlimd 3258 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
15 | 7, 14 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
16 | 15 | ssrdv 3984 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
17 | df-f 6546 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
18 | 5, 16, 17 | sylanbrc 582 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
19 | 4, 18 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ⊆ wss 3944 ran crn 5673 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 |
This theorem is referenced by: ffnfvf 7124 fnfvrnss 7125 fcdmssb 7126 fmpt2d 7128 fconstfv 7218 ffnov 7541 seqomlem2 8465 naddf 8695 elixpconst 8915 elixpsn 8947 unblem4 9314 ordtypelem4 9536 oismo 9555 cantnfvalf 9680 rankf 9809 alephon 10084 alephf1 10100 alephf1ALT 10118 alephfplem4 10122 cfsmolem 10285 infpssrlem3 10320 axcc4 10454 domtriomlem 10457 pwfseqlem3 10675 gch3 10691 inar1 10790 peano5nni 12237 cnref1o 12991 seqf2 14010 hashkf 14315 iswrdsymb 14505 ccatrn 14563 shftf 15050 sqrtf 15334 isercoll2 15639 eff2 16067 reeff1 16088 1arith 16887 ramcl 16989 xpscf 17538 dmaf 18029 cdaf 18030 coapm 18051 odf 19483 gsumpt 19908 dprdff 19960 dprdfcntz 19963 dprdfadd 19968 dprdlub 19974 rngmgpf 20088 mgpf 20179 prdscrngd 20247 isabvd 20689 psgnghm 21499 frlmsslsp 21717 psrbagcon 21850 psrbagconOLD 21851 mvrf2 21922 subrgmvrf 21959 mplbas2 21967 kqf 23638 fmf 23836 tmdgsum2 23987 prdstmdd 24015 prdstgpd 24016 prdsxmslem2 24425 metdsre 24756 evth 24872 evthicc2 25376 ovolfsf 25387 ovolf 25398 vitalilem2 25525 vitalilem5 25528 0plef 25588 mbfi1fseqlem4 25635 xrge0f 25648 itg2addlem 25675 dvfre 25870 dvne0 25931 mdegxrf 25991 mtest 26327 psercn 26350 recosf1o 26456 logcn 26568 amgm 26910 emcllem7 26921 dchrfi 27175 dchr1re 27183 dchrisum0re 27433 padicabvf 27551 addsf 27886 negsf 27951 noseqind 28152 vtxdgfisf 29277 hlimf 31034 pjrni 31499 pjmf1 31513 2ndresdju 32418 nsgmgc 33062 reprinfz1 34190 reprdifc 34195 bnj149 34442 subfacp1lem3 34728 mrsubrn 35059 msrf 35088 mclsind 35116 neibastop2lem 35780 rrncmslem 37240 cdlemk56 40381 sticksstones22 41572 hbtlem7 42471 dgraaf 42493 deg1mhm 42551 elixpconstg 44378 elmapsnd 44500 unirnmap 44504 resincncf 45186 dvnprodlem1 45257 volioof 45298 voliooicof 45307 qndenserrnbllem 45605 subsaliuncllem 45668 fge0iccico 45681 elhoi 45853 ovnsubaddlem1 45881 hoiqssbllem3 45935 ovolval4lem1 45960 rrx2xpref1o 47714 |
Copyright terms: Public domain | W3C validator |