![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elhoi | Structured version Visualization version GIF version |
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elhoi.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
elhoi | ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd 7449 | . . 3 ⊢ (𝜑 → (𝐴[,)𝐵) ∈ V) | |
2 | elhoi.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | elmapg 8849 | . . 3 ⊢ (((𝐴[,)𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) |
5 | id 22 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵)) | |
6 | icossxr 13433 | . . . . . . 7 ⊢ (𝐴[,)𝐵) ⊆ ℝ* | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*) |
8 | 5, 7 | fssd 6734 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*) |
9 | ffvelcdm 7085 | . . . . . 6 ⊢ ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥 ∈ 𝑋) → (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
10 | 9 | ralrimiva 3141 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) |
11 | 8, 10 | jca 511 | . . . 4 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
12 | ffn 6716 | . . . . . . 7 ⊢ (𝑌:𝑋⟶ℝ* → 𝑌 Fn 𝑋) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
15 | 13, 14 | jca 511 | . . . . 5 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
16 | ffnfv 7123 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) | |
17 | 15, 16 | sylibr 233 | . . . 4 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵)) |
18 | 11, 17 | impbii 208 | . . 3 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
20 | 4, 19 | bitrd 279 | 1 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 ⊆ wss 3944 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8836 ℝ*cxr 11269 [,)cico 13350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-map 8838 df-xr 11274 df-ico 13354 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |