Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhoi Structured version   Visualization version   GIF version

Theorem elhoi 45853
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
elhoi.1 (𝜑𝑋𝑉)
Assertion
Ref Expression
elhoi (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elhoi
StepHypRef Expression
1 ovexd 7449 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
2 elhoi.1 . . 3 (𝜑𝑋𝑉)
3 elmapg 8849 . . 3 (((𝐴[,)𝐵) ∈ V ∧ 𝑋𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
41, 2, 3syl2anc 583 . 2 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
5 id 22 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵))
6 icossxr 13433 . . . . . . 7 (𝐴[,)𝐵) ⊆ ℝ*
76a1i 11 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*)
85, 7fssd 6734 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*)
9 ffvelcdm 7085 . . . . . 6 ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥𝑋) → (𝑌𝑥) ∈ (𝐴[,)𝐵))
109ralrimiva 3141 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
118, 10jca 511 . . . 4 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
12 ffn 6716 . . . . . . 7 (𝑌:𝑋⟶ℝ*𝑌 Fn 𝑋)
1312adantr 480 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋)
14 simpr 484 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
1513, 14jca 511 . . . . 5 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
16 ffnfv 7123 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1715, 16sylibr 233 . . . 4 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵))
1811, 17impbii 208 . . 3 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1918a1i 11 . 2 (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
204, 19bitrd 279 1 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  wral 3056  Vcvv 3469  wss 3944   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8836  *cxr 11269  [,)cico 13350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-map 8838  df-xr 11274  df-ico 13354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator