![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdsre | Structured version Visualization version GIF version |
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
Ref | Expression |
---|---|
metdsre | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4342 | . . 3 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝑆) | |
2 | metxmet 24227 | . . . . . . . . 9 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | metdscn.f | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
4 | 3 | metdsf 24751 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | 2, 4 | sylan 579 | . . . . . . . 8 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶(0[,]+∞)) |
7 | 6 | ffnd 6717 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹 Fn 𝑋) |
8 | 5 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐹:𝑋⟶(0[,]+∞)) |
9 | simprr 772 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) | |
10 | 8, 9 | ffvelcdmd 7089 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
11 | eliccxr 13436 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → (𝐹‘𝑤) ∈ ℝ*) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ*) |
13 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐷 ∈ (Met‘𝑋)) | |
14 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) | |
15 | 14 | sselda 3978 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) |
16 | 15 | adantrr 716 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
17 | metcl 24225 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑧𝐷𝑤) ∈ ℝ) | |
18 | 13, 16, 9, 17 | syl3anc 1369 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝑧𝐷𝑤) ∈ ℝ) |
19 | elxrge0 13458 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) ↔ ((𝐹‘𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑤))) | |
20 | 19 | simprbi 496 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑤)) |
21 | 10, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 0 ≤ (𝐹‘𝑤)) |
22 | 3 | metdsle 24755 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
23 | 2, 22 | sylanl1 679 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
24 | xrrege0 13177 | . . . . . . . . 9 ⊢ ((((𝐹‘𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹‘𝑤) ∧ (𝐹‘𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹‘𝑤) ∈ ℝ) | |
25 | 12, 18, 21, 23, 24 | syl22anc 838 | . . . . . . . 8 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ) |
26 | 25 | anassrs 467 | . . . . . . 7 ⊢ ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) ∈ ℝ) |
27 | 26 | ralrimiva 3141 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ) |
28 | ffnfv 7123 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ)) | |
29 | 7, 27, 28 | sylanbrc 582 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶ℝ) |
30 | 29 | ex 412 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
31 | 30 | exlimdv 1929 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑧 𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
32 | 1, 31 | biimtrid 241 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ)) |
33 | 32 | 3impia 1115 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 ⊆ wss 3944 ∅c0 4318 class class class wbr 5142 ↦ cmpt 5225 ran crn 5673 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 infcinf 9456 ℝcr 11129 0cc0 11130 +∞cpnf 11267 ℝ*cxr 11269 < clt 11270 ≤ cle 11271 [,]cicc 13351 ∞Metcxmet 21251 Metcmet 21252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-er 8718 df-ec 8720 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-2 12297 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-icc 13355 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 |
This theorem is referenced by: metdscn2 24760 lebnumlem1 24874 lebnumlem3 24876 |
Copyright terms: Public domain | W3C validator |