![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ax8 2105 ax9 2113 rspc2 3616 rspc2v 3618 rspc3v 3623 rspc4v 3626 rspc8v 3628 copsexgw 5486 copsexg 5487 chfnrn 7052 fvcofneq 7097 ffnfv 7123 f1elima 7267 onint 7787 peano5 7893 peano5OLD 7894 f1oweALT 7970 smoel2 8377 pssnn 9184 php 9226 pssnnOLD 9281 fiint 9340 dffi2 9438 alephnbtwn 10086 cfcof 10289 zorn2lem7 10517 suplem1pr 11067 addsrpr 11090 mulsrpr 11091 cau3lem 15325 divalglem8 16368 efgi 19665 elfrlmbasn0 21684 locfincmp 23417 tx1stc 23541 fbunfip 23760 filuni 23776 ufileu 23810 rescncf 24804 shmodsi 31186 spanuni 31341 spansneleq 31367 mdi 32092 dmdi 32099 dmdi4 32104 funimass4f 32405 bj-ax89 36090 poimirlem32 37060 ffnafv 46474 |
Copyright terms: Public domain | W3C validator |