![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrtf | Structured version Visualization version GIF version |
Description: Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
sqrtf | ⊢ √:ℂ⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 7374 | . . 3 ⊢ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) ∈ V | |
2 | df-sqrt 15208 | . . 3 ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) | |
3 | 1, 2 | fnmpti 6692 | . 2 ⊢ √ Fn ℂ |
4 | sqrtcl 15334 | . . 3 ⊢ (𝑥 ∈ ℂ → (√‘𝑥) ∈ ℂ) | |
5 | 4 | rgen 3058 | . 2 ⊢ ∀𝑥 ∈ ℂ (√‘𝑥) ∈ ℂ |
6 | ffnfv 7123 | . 2 ⊢ (√:ℂ⟶ℂ ↔ (√ Fn ℂ ∧ ∀𝑥 ∈ ℂ (√‘𝑥) ∈ ℂ)) | |
7 | 3, 5, 6 | mpbir2an 710 | 1 ⊢ √:ℂ⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∉ wnel 3041 ∀wral 3056 class class class wbr 5142 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 ℩crio 7369 (class class class)co 7414 ℂcc 11130 0cc0 11132 ici 11134 · cmul 11137 ≤ cle 11273 2c2 12291 ℝ+crp 13000 ↑cexp 14052 ℜcre 15070 √csqrt 15206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
This theorem is referenced by: cphsqrtcl 25105 tcphex 25138 tchnmfval 25149 tcphcph 25158 resqrtcn 26677 sqrtcn 26678 loglesqrt 26686 ex-fpar 30265 rpsqrtcn 34215 ftc1anclem3 37157 rrnval 37289 |
Copyright terms: Public domain | W3C validator |