MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-abs Structured version   Visualization version   GIF version

Definition df-abs 15201
Description: Define the function for the absolute value (modulus) of a complex number. See abscli 15360 for its closure and absval 15203 or absval2i 15362 for its value. For example, (abs‘-2) = 2 (ex-abs 30239). (Contributed by NM, 27-Jul-1999.)
Assertion
Ref Expression
df-abs abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))

Detailed syntax breakdown of Definition df-abs
StepHypRef Expression
1 cabs 15199 . 2 class abs
2 vx . . 3 setvar 𝑥
3 cc 11122 . . 3 class
42cv 1533 . . . . 5 class 𝑥
5 ccj 15061 . . . . . 6 class
64, 5cfv 6542 . . . . 5 class (∗‘𝑥)
7 cmul 11129 . . . . 5 class ·
84, 6, 7co 7414 . . . 4 class (𝑥 · (∗‘𝑥))
9 csqrt 15198 . . . 4 class
108, 9cfv 6542 . . 3 class (√‘(𝑥 · (∗‘𝑥)))
112, 3, 10cmpt 5225 . 2 class (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
121, 11wceq 1534 1 wff abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
Colors of variables: wff setvar class
This definition is referenced by:  absval  15203  absf  15302  absfico  44504
  Copyright terms: Public domain W3C validator