![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssrlem3 | Structured version Visualization version GIF version |
Description: Lemma for infpssr 10323. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
infpssrlem.a | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infpssrlem.c | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
infpssrlem.d | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
infpssrlem.e | ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
Ref | Expression |
---|---|
infpssrlem3 | ⊢ (𝜑 → 𝐺:ω⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8449 | . . . 4 ⊢ (rec(◡𝐹, 𝐶) ↾ ω) Fn ω | |
2 | infpssrlem.e | . . . . 5 ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) | |
3 | 2 | fneq1i 6645 | . . . 4 ⊢ (𝐺 Fn ω ↔ (rec(◡𝐹, 𝐶) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 230 | . . 3 ⊢ 𝐺 Fn ω |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 Fn ω) |
6 | fveq2 6891 | . . . . . 6 ⊢ (𝑐 = ∅ → (𝐺‘𝑐) = (𝐺‘∅)) | |
7 | 6 | eleq1d 2813 | . . . . 5 ⊢ (𝑐 = ∅ → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘∅) ∈ 𝐴)) |
8 | fveq2 6891 | . . . . . 6 ⊢ (𝑐 = 𝑏 → (𝐺‘𝑐) = (𝐺‘𝑏)) | |
9 | 8 | eleq1d 2813 | . . . . 5 ⊢ (𝑐 = 𝑏 → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘𝑏) ∈ 𝐴)) |
10 | fveq2 6891 | . . . . . 6 ⊢ (𝑐 = suc 𝑏 → (𝐺‘𝑐) = (𝐺‘suc 𝑏)) | |
11 | 10 | eleq1d 2813 | . . . . 5 ⊢ (𝑐 = suc 𝑏 → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘suc 𝑏) ∈ 𝐴)) |
12 | infpssrlem.a | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
13 | infpssrlem.c | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) | |
14 | infpssrlem.d | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
15 | 12, 13, 14, 2 | infpssrlem1 10318 | . . . . . 6 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
16 | 14 | eldifad 3956 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
17 | 15, 16 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → (𝐺‘∅) ∈ 𝐴) |
18 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
19 | f1ocnv 6845 | . . . . . . . . . 10 ⊢ (𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐵) | |
20 | f1of 6833 | . . . . . . . . . 10 ⊢ (◡𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐴⟶𝐵) | |
21 | 13, 19, 20 | 3syl 18 | . . . . . . . . 9 ⊢ (𝜑 → ◡𝐹:𝐴⟶𝐵) |
22 | 21 | ffvelcdmda 7088 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐵) |
23 | 18, 22 | sseldd 3979 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐴) |
24 | 12, 13, 14, 2 | infpssrlem2 10319 | . . . . . . . 8 ⊢ (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (◡𝐹‘(𝐺‘𝑏))) |
25 | 24 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑏 ∈ ω → ((𝐺‘suc 𝑏) ∈ 𝐴 ↔ (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐴)) |
26 | 23, 25 | imbitrrid 245 | . . . . . 6 ⊢ (𝑏 ∈ ω → ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (𝐺‘suc 𝑏) ∈ 𝐴)) |
27 | 26 | expd 415 | . . . . 5 ⊢ (𝑏 ∈ ω → (𝜑 → ((𝐺‘𝑏) ∈ 𝐴 → (𝐺‘suc 𝑏) ∈ 𝐴))) |
28 | 7, 9, 11, 17, 27 | finds2 7900 | . . . 4 ⊢ (𝑐 ∈ ω → (𝜑 → (𝐺‘𝑐) ∈ 𝐴)) |
29 | 28 | com12 32 | . . 3 ⊢ (𝜑 → (𝑐 ∈ ω → (𝐺‘𝑐) ∈ 𝐴)) |
30 | 29 | ralrimiv 3140 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ ω (𝐺‘𝑐) ∈ 𝐴) |
31 | ffnfv 7123 | . 2 ⊢ (𝐺:ω⟶𝐴 ↔ (𝐺 Fn ω ∧ ∀𝑐 ∈ ω (𝐺‘𝑐) ∈ 𝐴)) | |
32 | 5, 30, 31 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐺:ω⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∖ cdif 3941 ⊆ wss 3944 ∅c0 4318 ◡ccnv 5671 ↾ cres 5674 suc csuc 6365 Fn wfn 6537 ⟶wf 6538 –1-1-onto→wf1o 6541 ‘cfv 6542 ωcom 7864 reccrdg 8423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 |
This theorem is referenced by: infpssrlem4 10321 infpssrlem5 10322 |
Copyright terms: Public domain | W3C validator |