HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimf Structured version   Visualization version   GIF version

Theorem hlimf 31034
Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimf 𝑣 :dom ⇝𝑣 ⟶ ℋ

Proof of Theorem hlimf
StepHypRef Expression
1 eqid 2727 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2 eqid 2727 . . . . . . 7 (IndMet‘⟨⟨ + , · ⟩, norm⟩) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
31, 2hhxmet 30972 . . . . . 6 (IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ)
4 eqid 2727 . . . . . . 7 (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) = (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
54methaus 24416 . . . . . 6 ((IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∈ Haus)
6 lmfun 23272 . . . . . 6 ((MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
73, 5, 6mp2b 10 . . . . 5 Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
8 funres 6589 . . . . 5 (Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) → Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)))
97, 8ax-mp 5 . . . 4 Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
101, 2, 4hhlm 30996 . . . . 5 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
1110funeqi 6568 . . . 4 (Fun ⇝𝑣 ↔ Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)))
129, 11mpbir 230 . . 3 Fun ⇝𝑣
13 funfn 6577 . . 3 (Fun ⇝𝑣 ↔ ⇝𝑣 Fn dom ⇝𝑣 )
1412, 13mpbi 229 . 2 𝑣 Fn dom ⇝𝑣
15 funfvbrb 7054 . . . . 5 (Fun ⇝𝑣 → (𝑥 ∈ dom ⇝𝑣𝑥𝑣 ( ⇝𝑣𝑥)))
1612, 15ax-mp 5 . . . 4 (𝑥 ∈ dom ⇝𝑣𝑥𝑣 ( ⇝𝑣𝑥))
17 fvex 6904 . . . . 5 ( ⇝𝑣𝑥) ∈ V
1817hlimveci 30987 . . . 4 (𝑥𝑣 ( ⇝𝑣𝑥) → ( ⇝𝑣𝑥) ∈ ℋ)
1916, 18sylbi 216 . . 3 (𝑥 ∈ dom ⇝𝑣 → ( ⇝𝑣𝑥) ∈ ℋ)
2019rgen 3058 . 2 𝑥 ∈ dom ⇝𝑣 ( ⇝𝑣𝑥) ∈ ℋ
21 ffnfv 7123 . 2 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ ↔ ( ⇝𝑣 Fn dom ⇝𝑣 ∧ ∀𝑥 ∈ dom ⇝𝑣 ( ⇝𝑣𝑥) ∈ ℋ))
2214, 20, 21mpbir2an 710 1 𝑣 :dom ⇝𝑣 ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2099  wral 3056  cop 4630   class class class wbr 5142  dom cdm 5672  cres 5674  Fun wfun 6536   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8836  cn 12234  ∞Metcxmet 21251  MetOpencmopn 21256  𝑡clm 23117  Hauscha 23199  IndMetcims 30388  chba 30716   + cva 30717   · csm 30718  normcno 30720  𝑣 chli 30724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209  ax-mulf 11210  ax-hilex 30796  ax-hfvadd 30797  ax-hvcom 30798  ax-hvass 30799  ax-hv0cl 30800  ax-hvaddid 30801  ax-hfvmul 30802  ax-hvmulid 30803  ax-hvmulass 30804  ax-hvdistr1 30805  ax-hvdistr2 30806  ax-hvmul0 30807  ax-hfi 30876  ax-his1 30879  ax-his2 30880  ax-his3 30881  ax-his4 30882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-icc 13355  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-topgen 17416  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-top 22783  df-topon 22800  df-bases 22836  df-lm 23120  df-haus 23206  df-grpo 30290  df-gid 30291  df-ginv 30292  df-gdiv 30293  df-ablo 30342  df-vc 30356  df-nv 30389  df-va 30392  df-ba 30393  df-sm 30394  df-0v 30395  df-vs 30396  df-nmcv 30397  df-ims 30398  df-hnorm 30765  df-hvsub 30768  df-hlim 30769
This theorem is referenced by:  hlimuni  31035  hhsscms  31075  occllem  31100  occl  31101  chscllem2  31435  chscllem4  31437
  Copyright terms: Public domain W3C validator