![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | funeq 6567 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 Fun wfun 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 df-br 5143 df-opab 5205 df-rel 5679 df-cnv 5680 df-co 5681 df-fun 6544 |
This theorem is referenced by: funmpt 6585 funmpt2 6586 funco 6587 funresfunco 6588 fununfun 6595 funprg 6601 funtpg 6602 funtp 6604 funcnvpr 6609 funcnvtp 6610 funcnvqp 6611 funcnv0 6613 f1cnvcnv 6797 f1cof1 6798 f1coOLD 6800 opabiotafun 6973 fvn0ssdmfun 7078 funopdmsn 7153 fpropnf1 7271 funoprabg 7535 mpofun 7538 mpofunOLD 7539 ovidig 7557 funcnvuni 7933 fiun 7940 f1iun 7941 tposfun 8241 tfr1a 8408 tz7.44lem1 8419 tz7.48-2 8456 ssdomg 9012 sbthlem7 9105 sbthlem8 9106 1sdomOLD 9265 hartogslem1 9557 r1funlim 9781 zorn2lem4 10514 axaddf 11160 axmulf 11161 fundmge2nop0 14477 funcnvs1 14887 strleun 17117 fthoppc 17903 cnfldfun 21280 cnfldfunALT 21281 cnfldfunOLD 21293 cnfldfunALTOLD 21294 cnfldfunALTOLDOLD 21295 volf 25445 dfrelog 26486 precsexlem10 28101 precsexlem11 28102 usgredg3 29016 ushgredgedg 29029 ushgredgedgloop 29031 2trld 29736 0pth 29922 1pthdlem1 29932 1trld 29939 3trld 29969 ajfuni 30656 hlimf 31034 funadj 31683 funcnvadj 31690 rinvf1o 32398 bnj97 34433 bnj150 34443 bnj1384 34599 bnj1421 34609 bnj60 34629 satffunlem2lem2 34952 satfv0fvfmla0 34959 funpartfun 35475 funtransport 35563 funray 35672 funline 35674 xlimfun 45166 funcoressn 46347 |
Copyright terms: Public domain | W3C validator |