MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeqi Structured version   Visualization version   GIF version

Theorem funeqi 6568
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 6567 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 5 1 (Fun 𝐴 ↔ Fun 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-in 3951  df-ss 3961  df-br 5143  df-opab 5205  df-rel 5679  df-cnv 5680  df-co 5681  df-fun 6544
This theorem is referenced by:  funmpt  6585  funmpt2  6586  funco  6587  funresfunco  6588  fununfun  6595  funprg  6601  funtpg  6602  funtp  6604  funcnvpr  6609  funcnvtp  6610  funcnvqp  6611  funcnv0  6613  f1cnvcnv  6797  f1cof1  6798  f1coOLD  6800  opabiotafun  6973  fvn0ssdmfun  7078  funopdmsn  7153  fpropnf1  7271  funoprabg  7535  mpofun  7538  mpofunOLD  7539  ovidig  7557  funcnvuni  7933  fiun  7940  f1iun  7941  tposfun  8241  tfr1a  8408  tz7.44lem1  8419  tz7.48-2  8456  ssdomg  9012  sbthlem7  9105  sbthlem8  9106  1sdomOLD  9265  hartogslem1  9557  r1funlim  9781  zorn2lem4  10514  axaddf  11160  axmulf  11161  fundmge2nop0  14477  funcnvs1  14887  strleun  17117  fthoppc  17903  cnfldfun  21280  cnfldfunALT  21281  cnfldfunOLD  21293  cnfldfunALTOLD  21294  cnfldfunALTOLDOLD  21295  volf  25445  dfrelog  26486  precsexlem10  28101  precsexlem11  28102  usgredg3  29016  ushgredgedg  29029  ushgredgedgloop  29031  2trld  29736  0pth  29922  1pthdlem1  29932  1trld  29939  3trld  29969  ajfuni  30656  hlimf  31034  funadj  31683  funcnvadj  31690  rinvf1o  32398  bnj97  34433  bnj150  34443  bnj1384  34599  bnj1421  34609  bnj60  34629  satffunlem2lem2  34952  satfv0fvfmla0  34959  funpartfun  35475  funtransport  35563  funray  35672  funline  35674  xlimfun  45166  funcoressn  46347
  Copyright terms: Public domain W3C validator