![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > padicabvf | Structured version Visualization version GIF version |
Description: The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
Ref | Expression |
---|---|
padicabvf | ⊢ 𝐽:ℙ⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qex 12967 | . . . 4 ⊢ ℚ ∈ V | |
2 | 1 | mptex 7229 | . . 3 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))) ∈ V |
3 | padic.j | . . 3 ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) | |
4 | 2, 3 | fnmpti 6692 | . 2 ⊢ 𝐽 Fn ℙ |
5 | 3 | padicfval 27536 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))))) |
6 | prmnn 16636 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
7 | 6 | ad2antrr 725 | . . . . . . . . . 10 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℕ) |
8 | 7 | nncnd 12250 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℂ) |
9 | 7 | nnne0d 12284 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ≠ 0) |
10 | df-ne 2936 | . . . . . . . . . 10 ⊢ (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0) | |
11 | pcqcl 16816 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈ ℤ) | |
12 | 11 | anassrs 467 | . . . . . . . . . 10 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑝 pCnt 𝑥) ∈ ℤ) |
13 | 10, 12 | sylan2br 594 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝 pCnt 𝑥) ∈ ℤ) |
14 | 8, 9, 13 | expnegd 14141 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥)))) |
15 | 8, 9, 13 | exprecd 14142 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → ((1 / 𝑝)↑(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥)))) |
16 | 14, 15 | eqtr4d 2770 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = ((1 / 𝑝)↑(𝑝 pCnt 𝑥))) |
17 | 16 | ifeq2da 4556 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))) = if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) |
18 | 17 | mpteq2dva 5242 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))) |
19 | 5, 18 | eqtrd 2767 | . . . 4 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))) |
20 | 6 | nnrecred 12285 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) ∈ ℝ) |
21 | 6 | nnred 12249 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
22 | prmgt1 16659 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 1 < 𝑝) | |
23 | recgt1i 12133 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℝ ∧ 1 < 𝑝) → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) | |
24 | 21, 22, 23 | syl2anc 583 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) |
25 | 24 | simpld 494 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 0 < (1 / 𝑝)) |
26 | 24 | simprd 495 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) < 1) |
27 | 0xr 11283 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
28 | 1xr 11295 | . . . . . . 7 ⊢ 1 ∈ ℝ* | |
29 | elioo2 13389 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1))) | |
30 | 27, 28, 29 | mp2an 691 | . . . . . 6 ⊢ ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) |
31 | 20, 25, 26, 30 | syl3anbrc 1341 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) ∈ (0(,)1)) |
32 | qrng.q | . . . . . 6 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
33 | qabsabv.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑄) | |
34 | eqid 2727 | . . . . . 6 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) | |
35 | 32, 33, 34 | padicabv 27550 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ (1 / 𝑝) ∈ (0(,)1)) → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴) |
36 | 31, 35 | mpdan 686 | . . . 4 ⊢ (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴) |
37 | 19, 36 | eqeltrd 2828 | . . 3 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) ∈ 𝐴) |
38 | 37 | rgen 3058 | . 2 ⊢ ∀𝑝 ∈ ℙ (𝐽‘𝑝) ∈ 𝐴 |
39 | ffnfv 7123 | . 2 ⊢ (𝐽:ℙ⟶𝐴 ↔ (𝐽 Fn ℙ ∧ ∀𝑝 ∈ ℙ (𝐽‘𝑝) ∈ 𝐴)) | |
40 | 4, 38, 39 | mpbir2an 710 | 1 ⊢ 𝐽:ℙ⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 ifcif 4524 class class class wbr 5142 ↦ cmpt 5225 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℝcr 11129 0cc0 11130 1c1 11131 ℝ*cxr 11269 < clt 11270 -cneg 11467 / cdiv 11893 ℕcn 12234 ℤcz 12580 ℚcq 12954 (,)cioo 13348 ↑cexp 14050 ℙcprime 16633 pCnt cpc 16796 ↾s cress 17200 AbsValcabv 20685 ℂfldccnfld 21266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 ax-mulf 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-ioo 13352 df-ico 13354 df-fz 13509 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-dvds 16223 df-gcd 16461 df-prm 16634 df-pc 16797 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-0g 17414 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-minusg 18885 df-subg 19069 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-cring 20167 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-subrng 20472 df-subrg 20497 df-drng 20615 df-abv 20686 df-cnfld 21267 |
This theorem is referenced by: ostth 27559 |
Copyright terms: Public domain | W3C validator |