![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdegxrf | Structured version Visualization version GIF version |
Description: Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegxrcl.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
mdegxrcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mdegxrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
mdegxrf | ⊢ 𝐷:𝐵⟶ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 13144 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | supex 9478 | . . 3 ⊢ sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝑧 supp (0g‘𝑅))), ℝ*, < ) ∈ V |
3 | mdegxrcl.d | . . . 4 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
4 | mdegxrcl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
5 | mdegxrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
6 | eqid 2727 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | eqid 2727 | . . . 4 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
8 | eqid 2727 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
9 | 3, 4, 5, 6, 7, 8 | mdegfval 25985 | . . 3 ⊢ 𝐷 = (𝑧 ∈ 𝐵 ↦ sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝑧 supp (0g‘𝑅))), ℝ*, < )) |
10 | 2, 9 | fnmpti 6692 | . 2 ⊢ 𝐷 Fn 𝐵 |
11 | 3, 4, 5 | mdegxrcl 25990 | . . 3 ⊢ (𝑓 ∈ 𝐵 → (𝐷‘𝑓) ∈ ℝ*) |
12 | 11 | rgen 3058 | . 2 ⊢ ∀𝑓 ∈ 𝐵 (𝐷‘𝑓) ∈ ℝ* |
13 | ffnfv 7123 | . 2 ⊢ (𝐷:𝐵⟶ℝ* ↔ (𝐷 Fn 𝐵 ∧ ∀𝑓 ∈ 𝐵 (𝐷‘𝑓) ∈ ℝ*)) | |
14 | 10, 12, 13 | mpbir2an 710 | 1 ⊢ 𝐷:𝐵⟶ℝ* |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 ↦ cmpt 5225 ◡ccnv 5671 “ cima 5675 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 supp csupp 8159 ↑m cmap 8836 Fincfn 8955 supcsup 9455 ℝ*cxr 11269 < clt 11270 ℕcn 12234 ℕ0cn0 12494 Basecbs 17171 0gc0g 17412 Σg cgsu 17413 ℂfldccnfld 21266 mPoly cmpl 21826 mDeg cmdg 25973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-fzo 13652 df-seq 13991 df-hash 14314 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-0g 17414 df-gsum 17415 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-grp 18884 df-minusg 18885 df-cntz 19259 df-cmn 19728 df-abl 19729 df-mgp 20066 df-ur 20113 df-ring 20166 df-cring 20167 df-cnfld 21267 df-psr 21829 df-mpl 21831 df-mdeg 25975 |
This theorem is referenced by: deg1xrf 26004 |
Copyright terms: Public domain | W3C validator |