MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstmdd Structured version   Visualization version   GIF version

Theorem prdstmdd 24015
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstmdd.y 𝑌 = (𝑆Xs𝑅)
prdstmdd.i (𝜑𝐼𝑊)
prdstmdd.s (𝜑𝑆𝑉)
prdstmdd.r (𝜑𝑅:𝐼⟶TopMnd)
Assertion
Ref Expression
prdstmdd (𝜑𝑌 ∈ TopMnd)

Proof of Theorem prdstmdd
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstmdd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstmdd.i . . 3 (𝜑𝐼𝑊)
3 prdstmdd.s . . 3 (𝜑𝑆𝑉)
4 prdstmdd.r . . . 4 (𝜑𝑅:𝐼⟶TopMnd)
5 tmdmnd 23966 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ Mnd)
65ssriv 3982 . . . 4 TopMnd ⊆ Mnd
7 fss 6733 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
84, 6, 7sylancl 585 . . 3 (𝜑𝑅:𝐼⟶Mnd)
91, 2, 3, 8prdsmndd 18718 . 2 (𝜑𝑌 ∈ Mnd)
10 tmdtps 23967 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ TopSp)
1110ssriv 3982 . . . 4 TopMnd ⊆ TopSp
12 fss 6733 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ TopSp) → 𝑅:𝐼⟶TopSp)
134, 11, 12sylancl 585 . . 3 (𝜑𝑅:𝐼⟶TopSp)
141, 3, 2, 13prdstps 23520 . 2 (𝜑𝑌 ∈ TopSp)
15 eqid 2727 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
1633ad2ant1 1131 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑆𝑉)
1723ad2ant1 1131 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝐼𝑊)
184ffnd 6717 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
19183ad2ant1 1131 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
20 simp2 1135 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑓 ∈ (Base‘𝑌))
21 simp3 1136 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑔 ∈ (Base‘𝑌))
22 eqid 2727 . . . . . . 7 (+g𝑌) = (+g𝑌)
231, 15, 16, 17, 19, 20, 21, 22prdsplusgval 17446 . . . . . 6 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → (𝑓(+g𝑌)𝑔) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
2423mpoeq3dva 7491 . . . . 5 (𝜑 → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔)) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))))
25 eqid 2727 . . . . . 6 (+𝑓𝑌) = (+𝑓𝑌)
2615, 22, 25plusffval 18597 . . . . 5 (+𝑓𝑌) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔))
27 vex 3473 . . . . . . . . . 10 𝑓 ∈ V
28 vex 3473 . . . . . . . . . 10 𝑔 ∈ V
2927, 28op1std 7997 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (1st𝑧) = 𝑓)
3029fveq1d 6893 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((1st𝑧)‘𝑘) = (𝑓𝑘))
3127, 28op2ndd 7998 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (2nd𝑧) = 𝑔)
3231fveq1d 6893 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((2nd𝑧)‘𝑘) = (𝑔𝑘))
3330, 32oveq12d 7432 . . . . . . 7 (𝑧 = ⟨𝑓, 𝑔⟩ → (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)) = ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
3433mpteq2dv 5244 . . . . . 6 (𝑧 = ⟨𝑓, 𝑔⟩ → (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3534mpompt 7528 . . . . 5 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3624, 26, 353eqtr4g 2792 . . . 4 (𝜑 → (+𝑓𝑌) = (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))))
37 eqid 2727 . . . . 5 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
38 eqid 2727 . . . . . . . 8 (TopOpen‘𝑌) = (TopOpen‘𝑌)
3915, 38istps 22823 . . . . . . 7 (𝑌 ∈ TopSp ↔ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
4014, 39sylib 217 . . . . . 6 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
41 txtopon 23482 . . . . . 6 (((TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌))) → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
4240, 40, 41syl2anc 583 . . . . 5 (𝜑 → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
43 topnfn 17398 . . . . . . . 8 TopOpen Fn V
44 ssv 4002 . . . . . . . 8 TopSp ⊆ V
45 fnssres 6672 . . . . . . . 8 ((TopOpen Fn V ∧ TopSp ⊆ V) → (TopOpen ↾ TopSp) Fn TopSp)
4643, 44, 45mp2an 691 . . . . . . 7 (TopOpen ↾ TopSp) Fn TopSp
47 fvres 6910 . . . . . . . . 9 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) = (TopOpen‘𝑥))
48 eqid 2727 . . . . . . . . . 10 (TopOpen‘𝑥) = (TopOpen‘𝑥)
4948tpstop 22826 . . . . . . . . 9 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
5047, 49eqeltrd 2828 . . . . . . . 8 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) ∈ Top)
5150rgen 3058 . . . . . . 7 𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top
52 ffnfv 7123 . . . . . . 7 ((TopOpen ↾ TopSp):TopSp⟶Top ↔ ((TopOpen ↾ TopSp) Fn TopSp ∧ ∀𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top))
5346, 51, 52mpbir2an 710 . . . . . 6 (TopOpen ↾ TopSp):TopSp⟶Top
54 fco2 6744 . . . . . 6 (((TopOpen ↾ TopSp):TopSp⟶Top ∧ 𝑅:𝐼⟶TopSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
5553, 13, 54sylancr 586 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
5633mpompt 7528 . . . . . 6 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
57 eqid 2727 . . . . . . . 8 (TopOpen‘(𝑅𝑘)) = (TopOpen‘(𝑅𝑘))
58 eqid 2727 . . . . . . . 8 (+g‘(𝑅𝑘)) = (+g‘(𝑅𝑘))
594ffvelcdmda 7088 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopMnd)
6040adantr 480 . . . . . . . 8 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
6160, 60cnmpt1st 23559 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑓) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
621, 3, 2, 18, 38prdstopn 23519 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6362adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6463, 60eqeltrrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
65 toponuni 22803 . . . . . . . . . . . . 13 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6664, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6766mpteq1d 5237 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)))
682adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝐼𝑊)
6955adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
70 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝑘𝐼)
71 eqid 2727 . . . . . . . . . . . . 13 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
7271, 37ptpjcn 23502 . . . . . . . . . . . 12 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7368, 69, 70, 72syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7467, 73eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7563eqcomd 2733 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
76 fvco3 6991 . . . . . . . . . . . 12 ((𝑅:𝐼⟶TopMnd ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
774, 76sylan 579 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
7875, 77oveq12d 7432 . . . . . . . . . 10 ((𝜑𝑘𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
7974, 78eleqtrd 2830 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
80 fveq1 6890 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥𝑘) = (𝑓𝑘))
8160, 60, 61, 60, 79, 80cnmpt21 23562 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8260, 60cnmpt2nd 23560 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑔) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
83 fveq1 6890 . . . . . . . . 9 (𝑥 = 𝑔 → (𝑥𝑘) = (𝑔𝑘))
8460, 60, 82, 60, 79, 83cnmpt21 23562 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑔𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8557, 58, 59, 60, 60, 81, 84cnmpt2plusg 23979 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8677oveq2d 7430 . . . . . . 7 ((𝜑𝑘𝐼) → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8785, 86eleqtrrd 2831 . . . . . 6 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8856, 87eqeltrid 2832 . . . . 5 ((𝜑𝑘𝐼) → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8937, 42, 2, 55, 88ptcn 23518 . . . 4 (𝜑 → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9036, 89eqeltrd 2828 . . 3 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9162oveq2d 7430 . . 3 (𝜑 → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9290, 91eleqtrrd 2831 . 2 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
9325, 38istmd 23965 . 2 (𝑌 ∈ TopMnd ↔ (𝑌 ∈ Mnd ∧ 𝑌 ∈ TopSp ∧ (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌))))
949, 14, 92, 93syl3anbrc 1341 1 (𝜑𝑌 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  Vcvv 3469  wss 3944  cop 4630   cuni 4903  cmpt 5225   × cxp 5670  cres 5674  ccom 5676   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  cmpo 7416  1st c1st 7985  2nd c2nd 7986  Basecbs 17171  +gcplusg 17224  TopOpenctopn 17394  tcpt 17411  Xscprds 17418  +𝑓cplusf 18588  Mndcmnd 18685  Topctop 22782  TopOnctopon 22799  TopSpctps 22821   Cn ccn 23115   ×t ctx 23451  TopMndctmd 23961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fi 9426  df-sup 9457  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-struct 17107  df-slot 17142  df-ndx 17154  df-base 17172  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-rest 17395  df-topn 17396  df-0g 17414  df-topgen 17416  df-pt 17417  df-prds 17420  df-plusf 18590  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cn 23118  df-cnp 23119  df-tx 23453  df-tmd 23963
This theorem is referenced by:  prdstgpd  24016
  Copyright terms: Public domain W3C validator