![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-hom | Structured version Visualization version GIF version |
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17384 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hom | ⊢ Hom = Slot ;14 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chom 17235 | . 2 class Hom | |
2 | c1 11131 | . . . 4 class 1 | |
3 | c4 12291 | . . . 4 class 4 | |
4 | 2, 3 | cdc 12699 | . . 3 class ;14 |
5 | 4 | cslot 17141 | . 2 class Slot ;14 |
6 | 1, 5 | wceq 1534 | 1 wff Hom = Slot ;14 |
Colors of variables: wff setvar class |
This definition is referenced by: homndx 17383 homid 17384 oppchomfvalOLD 17686 wunfuncOLD 17879 wunnatOLD 17938 fuchomOLD 17944 catcoppcclOLD 18098 catcfucclOLD 18100 catcxpcclOLD 18190 |
Copyright terms: Public domain | W3C validator |