MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hom Structured version   Visualization version   GIF version

Definition df-hom 17248
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17384 instead. (New usage is discouraged.)
Assertion
Ref Expression
df-hom Hom = Slot 14

Detailed syntax breakdown of Definition df-hom
StepHypRef Expression
1 chom 17235 . 2 class Hom
2 c1 11131 . . . 4 class 1
3 c4 12291 . . . 4 class 4
42, 3cdc 12699 . . 3 class 14
54cslot 17141 . 2 class Slot 14
61, 5wceq 1534 1 wff Hom = Slot 14
Colors of variables: wff setvar class
This definition is referenced by:  homndx  17383  homid  17384  oppchomfvalOLD  17686  wunfuncOLD  17879  wunnatOLD  17938  fuchomOLD  17944  catcoppcclOLD  18098  catcfucclOLD  18100  catcxpcclOLD  18190
  Copyright terms: Public domain W3C validator