MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstopn Structured version   Visualization version   GIF version

Theorem prdstopn 23525
Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y 𝑌 = (𝑆Xs𝑅)
prdstopn.s (𝜑𝑆𝑉)
prdstopn.i (𝜑𝐼𝑊)
prdstopn.r (𝜑𝑅 Fn 𝐼)
prdstopn.o 𝑂 = (TopOpen‘𝑌)
Assertion
Ref Expression
prdstopn (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))

Proof of Theorem prdstopn
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstopn.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
2 prdstopn.s . . . . . 6 (𝜑𝑆𝑉)
3 prdstopn.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
4 prdstopn.i . . . . . . 7 (𝜑𝐼𝑊)
5 fnex 7223 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 583 . . . . . 6 (𝜑𝑅 ∈ V)
7 eqid 2727 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
8 eqidd 2728 . . . . . 6 (𝜑 → dom 𝑅 = dom 𝑅)
9 eqid 2727 . . . . . 6 (TopSet‘𝑌) = (TopSet‘𝑌)
101, 2, 6, 7, 8, 9prdstset 17441 . . . . 5 (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
11 topnfn 17400 . . . . . . . . . . 11 TopOpen Fn V
12 dffn2 6718 . . . . . . . . . . . 12 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
133, 12sylib 217 . . . . . . . . . . 11 (𝜑𝑅:𝐼⟶V)
14 fnfco 6756 . . . . . . . . . . 11 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
1511, 13, 14sylancr 586 . . . . . . . . . 10 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
16 eqid 2727 . . . . . . . . . . 11 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}
1716ptval 23467 . . . . . . . . . 10 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
184, 15, 17syl2anc 583 . . . . . . . . 9 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
1918unieqd 4916 . . . . . . . 8 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
20 fvco2 6989 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Fn 𝐼𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
213, 20sylan 579 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
22 eqid 2727 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
23 eqid 2727 . . . . . . . . . . . . . . . . . . . . . 22 (TopSet‘(𝑅𝑦)) = (TopSet‘(𝑅𝑦))
2422, 23topnval 17409 . . . . . . . . . . . . . . . . . . . . 21 ((TopSet‘(𝑅𝑦)) ↾t (Base‘(𝑅𝑦))) = (TopOpen‘(𝑅𝑦))
25 restsspw 17406 . . . . . . . . . . . . . . . . . . . . 21 ((TopSet‘(𝑅𝑦)) ↾t (Base‘(𝑅𝑦))) ⊆ 𝒫 (Base‘(𝑅𝑦))
2624, 25eqsstrri 4013 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘(𝑅𝑦)) ⊆ 𝒫 (Base‘(𝑅𝑦))
2721, 26eqsstrdi 4032 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ⊆ 𝒫 (Base‘(𝑅𝑦)))
2827sseld 3977 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐼) → ((𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔𝑦) ∈ 𝒫 (Base‘(𝑅𝑦))))
29 fvex 6904 . . . . . . . . . . . . . . . . . . 19 (𝑔𝑦) ∈ V
3029elpw 4602 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑦) ∈ 𝒫 (Base‘(𝑅𝑦)) ↔ (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)))
3128, 30imbitrdi 250 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐼) → ((𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔𝑦) ⊆ (Base‘(𝑅𝑦))))
3231ralimdva 3162 . . . . . . . . . . . . . . . 16 (𝜑 → (∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → ∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦))))
33 simpl2 1190 . . . . . . . . . . . . . . . 16 (((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦))
3432, 33impel 505 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → ∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)))
35 ss2ixp 8922 . . . . . . . . . . . . . . 15 (∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)) → X𝑦𝐼 (𝑔𝑦) ⊆ X𝑦𝐼 (Base‘(𝑅𝑦)))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → X𝑦𝐼 (𝑔𝑦) ⊆ X𝑦𝐼 (Base‘(𝑅𝑦)))
37 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → 𝑥 = X𝑦𝐼 (𝑔𝑦))
381, 7, 2, 4, 3prdsbas2 17444 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑌) = X𝑦𝐼 (Base‘(𝑅𝑦)))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → (Base‘𝑌) = X𝑦𝐼 (Base‘(𝑅𝑦)))
4036, 37, 393sstr4d 4025 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → 𝑥 ⊆ (Base‘𝑌))
4140ex 412 . . . . . . . . . . . 12 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ⊆ (Base‘𝑌)))
4241exlimdv 1929 . . . . . . . . . . 11 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ⊆ (Base‘𝑌)))
43 velpw 4603 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (Base‘𝑌) ↔ 𝑥 ⊆ (Base‘𝑌))
4442, 43imbitrrdi 251 . . . . . . . . . 10 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ∈ 𝒫 (Base‘𝑌)))
4544abssdv 4061 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌))
46 fvex 6904 . . . . . . . . . . 11 (Base‘𝑌) ∈ V
4746pwex 5374 . . . . . . . . . 10 𝒫 (Base‘𝑌) ∈ V
4847ssex 5315 . . . . . . . . 9 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ∈ V)
49 unitg 22863 . . . . . . . . 9 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
5045, 48, 493syl 18 . . . . . . . 8 (𝜑 (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
5119, 50eqtrd 2767 . . . . . . 7 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
52 sspwuni 5097 . . . . . . . 8 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌) ↔ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ (Base‘𝑌))
5345, 52sylib 217 . . . . . . 7 (𝜑 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ (Base‘𝑌))
5451, 53eqsstrd 4016 . . . . . 6 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌))
55 sspwuni 5097 . . . . . 6 ((∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌) ↔ (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌))
5654, 55sylibr 233 . . . . 5 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌))
5710, 56eqsstrd 4016 . . . 4 (𝜑 → (TopSet‘𝑌) ⊆ 𝒫 (Base‘𝑌))
587, 9topnid 17410 . . . 4 ((TopSet‘𝑌) ⊆ 𝒫 (Base‘𝑌) → (TopSet‘𝑌) = (TopOpen‘𝑌))
5957, 58syl 17 . . 3 (𝜑 → (TopSet‘𝑌) = (TopOpen‘𝑌))
60 prdstopn.o . . 3 𝑂 = (TopOpen‘𝑌)
6159, 60eqtr4di 2785 . 2 (𝜑 → (TopSet‘𝑌) = 𝑂)
6261, 10eqtr3d 2769 1 (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  {cab 2704  wral 3056  wrex 3065  Vcvv 3469  cdif 3941  wss 3944  𝒫 cpw 4598   cuni 4903  dom cdm 5672  ccom 5676   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  Xcixp 8909  Fincfn 8957  Basecbs 17173  TopSetcts 17232  t crest 17395  TopOpenctopn 17396  topGenctg 17412  tcpt 17413  Xscprds 17420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-topgen 17418  df-pt 17419  df-prds 17422
This theorem is referenced by:  xpstopnlem2  23708  prdstmdd  24021  prdstgpd  24022  prdsxmslem2  24431
  Copyright terms: Public domain W3C validator