![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddf | Structured version Visualization version GIF version |
Description: Function statement for natural addition. (Contributed by Scott Fenton, 20-Jan-2025.) |
Ref | Expression |
---|---|
naddf | ⊢ +no :(On × On)⟶On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddfn 8689 | . 2 ⊢ +no Fn (On × On) | |
2 | naddcl 8691 | . . . 4 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 +no 𝑧) ∈ On) | |
3 | 2 | rgen2 3192 | . . 3 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On |
4 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ( +no ‘𝑥) = ( +no ‘〈𝑦, 𝑧〉)) | |
5 | df-ov 7417 | . . . . . 6 ⊢ (𝑦 +no 𝑧) = ( +no ‘〈𝑦, 𝑧〉) | |
6 | 4, 5 | eqtr4di 2785 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ( +no ‘𝑥) = (𝑦 +no 𝑧)) |
7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (( +no ‘𝑥) ∈ On ↔ (𝑦 +no 𝑧) ∈ On)) |
8 | 7 | ralxp 5838 | . . 3 ⊢ (∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On) |
9 | 3, 8 | mpbir 230 | . 2 ⊢ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On |
10 | ffnfv 7123 | . 2 ⊢ ( +no :(On × On)⟶On ↔ ( +no Fn (On × On) ∧ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On)) | |
11 | 1, 9, 10 | mpbir2an 710 | 1 ⊢ +no :(On × On)⟶On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3056 〈cop 4630 × cxp 5670 Oncon0 6363 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 +no cnadd 8679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-frecs 8280 df-nadd 8680 |
This theorem is referenced by: naddunif 8707 naddasslem1 8708 naddasslem2 8709 |
Copyright terms: Public domain | W3C validator |