MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddf Structured version   Visualization version   GIF version

Theorem naddf 8695
Description: Function statement for natural addition. (Contributed by Scott Fenton, 20-Jan-2025.)
Assertion
Ref Expression
naddf +no :(On × On)⟶On

Proof of Theorem naddf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 naddfn 8689 . 2 +no Fn (On × On)
2 naddcl 8691 . . . 4 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 +no 𝑧) ∈ On)
32rgen2 3192 . . 3 𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On
4 fveq2 6891 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → ( +no ‘𝑥) = ( +no ‘⟨𝑦, 𝑧⟩))
5 df-ov 7417 . . . . . 6 (𝑦 +no 𝑧) = ( +no ‘⟨𝑦, 𝑧⟩)
64, 5eqtr4di 2785 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → ( +no ‘𝑥) = (𝑦 +no 𝑧))
76eleq1d 2813 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (( +no ‘𝑥) ∈ On ↔ (𝑦 +no 𝑧) ∈ On))
87ralxp 5838 . . 3 (∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On)
93, 8mpbir 230 . 2 𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On
10 ffnfv 7123 . 2 ( +no :(On × On)⟶On ↔ ( +no Fn (On × On) ∧ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On))
111, 9, 10mpbir2an 710 1 +no :(On × On)⟶On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wral 3056  cop 4630   × cxp 5670  Oncon0 6363   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414   +no cnadd 8679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-frecs 8280  df-nadd 8680
This theorem is referenced by:  naddunif  8707  naddasslem1  8708  naddasslem2  8709
  Copyright terms: Public domain W3C validator