![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1140 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: limord 6424 smores2 8369 smofvon2 8371 smofvon 8374 errel 8728 elunitrn 13471 lincmb01cmp 13499 iccf1o 13500 elfznn0 13621 elfzouz 13663 ef01bndlem 16155 sin01bnd 16156 cos01bnd 16157 sin01gt0 16161 cos01gt0 16162 sin02gt0 16163 gzcn 16895 mresspw 17566 drsprs 18289 ipodrscl 18524 subgrcl 19080 pmtrfconj 19415 pgpprm 19542 slwprm 19558 efgsdmi 19681 efgsrel 19683 efgs1b 19685 efgsp1 19686 efgsres 19687 efgsfo 19688 efgredlema 19689 efgredlemf 19690 efgredlemd 19693 efgredlemc 19694 efgredlem 19696 efgrelexlemb 19699 efgcpbllemb 19704 rngabl 20089 srgcmn 20123 ringgrp 20172 irredcl 20357 subrngrcl 20482 sdrgrcl 20671 lmodgrp 20744 lssss 20814 phllvec 21555 obsrcl 21651 locfintop 23419 fclstop 23909 tmdmnd 23973 tgpgrp 23976 trgtgp 24066 tdrgtrg 24071 ust0 24118 ngpgrp 24502 elii1 24852 elii2 24853 icopnfcnv 24861 icopnfhmeo 24862 iccpnfhmeo 24864 xrhmeo 24865 oprpiece1res2 24871 phtpcer 24915 pcoval2 24937 pcoass 24945 clmlmod 24988 cphphl 25093 cphnlm 25094 cphsca 25101 bnnvc 25262 uc1pcl 26073 mon1pcl 26074 sinq12ge0 26437 cosq14ge0 26440 cosq34lt1 26455 cosord 26459 cos11 26461 recosf1o 26463 resinf1o 26464 efifo 26475 logrncn 26490 atanf 26806 atanneg 26833 efiatan 26838 atanlogaddlem 26839 atanlogadd 26840 atanlogsub 26842 efiatan2 26843 2efiatan 26844 tanatan 26845 areass 26885 dchrvmasumlem2 27425 dchrvmasumiflem1 27428 brbtwn2 28710 ax5seglem1 28733 ax5seglem2 28734 ax5seglem3 28736 ax5seglem5 28738 ax5seglem6 28739 ax5seglem9 28742 ax5seg 28743 axbtwnid 28744 axpaschlem 28745 axpasch 28746 axcontlem2 28770 axcontlem4 28772 axcontlem7 28775 pthistrl 29533 clwwlkbp 29789 sticl 32019 hstcl 32021 omndmnd 32779 slmdcmn 32907 orngring 33010 rrextnrg 33597 rrextdrg 33598 rossspw 33783 srossspw 33790 eulerpartlemd 33981 eulerpartlemf 33985 eulerpartlemgvv 33991 eulerpartlemgu 33992 eulerpartlemgh 33993 eulerpartlemgs2 33995 eulerpartlemn 33996 bnj564 34370 bnj1366 34455 bnj545 34521 bnj548 34523 bnj558 34528 bnj570 34531 bnj580 34539 bnj929 34562 bnj998 34583 bnj1006 34586 bnj1190 34634 bnj1523 34697 msrval 35143 mthmpps 35187 eqvrelrefrel 38065 atllat 38767 stoweidlem60 45439 fourierdlem111 45596 prproropf1o 46838 |
Copyright terms: Public domain | W3C validator |