![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efifo | Structured version Visualization version GIF version |
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
Ref | Expression |
---|---|
efifo.1 | ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) |
efifo.2 | ⊢ 𝐶 = (◡abs “ {1}) |
Ref | Expression |
---|---|
efifo | ⊢ 𝐹:ℝ–onto→𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efifo.1 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) | |
2 | ax-icn 11191 | . . . . . . . 8 ⊢ i ∈ ℂ | |
3 | recn 11222 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ → 𝑧 ∈ ℂ) | |
4 | mulcl 11216 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ) | |
5 | 2, 3, 4 | sylancr 586 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ) |
6 | efcl 16052 | . . . . . . 7 ⊢ ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ) |
8 | absefi 16166 | . . . . . 6 ⊢ (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1) | |
9 | absf 15310 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
10 | ffn 6716 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
11 | fniniseg 7063 | . . . . . . 7 ⊢ (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ ((exp‘(i · 𝑧)) ∈ (◡abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)) |
13 | 7, 8, 12 | sylanbrc 582 | . . . . 5 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (◡abs “ {1})) |
14 | efifo.2 | . . . . 5 ⊢ 𝐶 = (◡abs “ {1}) | |
15 | 13, 14 | eleqtrrdi 2840 | . . . 4 ⊢ (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶) |
16 | 1, 15 | fmpti 7116 | . . 3 ⊢ 𝐹:ℝ⟶𝐶 |
17 | ffn 6716 | . . 3 ⊢ (𝐹:ℝ⟶𝐶 → 𝐹 Fn ℝ) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ 𝐹 Fn ℝ |
19 | frn 6723 | . . . 4 ⊢ (𝐹:ℝ⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
20 | 16, 19 | ax-mp 5 | . . 3 ⊢ ran 𝐹 ⊆ 𝐶 |
21 | df-ima 5685 | . . . . 5 ⊢ (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π))) | |
22 | 1 | reseq1i 5975 | . . . . . . . 8 ⊢ (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) |
23 | 0xr 11285 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ* | |
24 | 2re 12310 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
25 | pire 26386 | . . . . . . . . . . . . 13 ⊢ π ∈ ℝ | |
26 | 24, 25 | remulcli 11254 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℝ |
27 | elioc2 13413 | . . . . . . . . . . . 12 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π)))) | |
28 | 23, 26, 27 | mp2an 691 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ (2 · π))) |
29 | 28 | simp1bi 1143 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ) |
30 | 29 | ssriv 3982 | . . . . . . . . 9 ⊢ (0(,](2 · π)) ⊆ ℝ |
31 | resmpt 6035 | . . . . . . . . 9 ⊢ ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))) | |
32 | 30, 31 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
33 | 22, 32 | eqtri 2756 | . . . . . . 7 ⊢ (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
34 | 33 | rneqi 5933 | . . . . . 6 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) |
35 | 0re 11240 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
36 | eqid 2728 | . . . . . . . . 9 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) | |
37 | 26 | recni 11252 | . . . . . . . . . . . 12 ⊢ (2 · π) ∈ ℂ |
38 | 37 | addlidi 11426 | . . . . . . . . . . 11 ⊢ (0 + (2 · π)) = (2 · π) |
39 | 38 | oveq2i 7425 | . . . . . . . . . 10 ⊢ (0(,](0 + (2 · π))) = (0(,](2 · π)) |
40 | 39 | eqcomi 2737 | . . . . . . . . 9 ⊢ (0(,](2 · π)) = (0(,](0 + (2 · π))) |
41 | 36, 14, 40 | efif1o 26473 | . . . . . . . 8 ⊢ (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶) |
42 | 35, 41 | ax-mp 5 | . . . . . . 7 ⊢ (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 |
43 | f1ofo 6840 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto→𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶) | |
44 | forn 6808 | . . . . . . 7 ⊢ ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto→𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶) | |
45 | 42, 43, 44 | mp2b 10 | . . . . . 6 ⊢ ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶 |
46 | 34, 45 | eqtri 2756 | . . . . 5 ⊢ ran (𝐹 ↾ (0(,](2 · π))) = 𝐶 |
47 | 21, 46 | eqtri 2756 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) = 𝐶 |
48 | imassrn 6068 | . . . 4 ⊢ (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹 | |
49 | 47, 48 | eqsstrri 4013 | . . 3 ⊢ 𝐶 ⊆ ran 𝐹 |
50 | 20, 49 | eqssi 3994 | . 2 ⊢ ran 𝐹 = 𝐶 |
51 | df-fo 6548 | . 2 ⊢ (𝐹:ℝ–onto→𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶)) | |
52 | 18, 50, 51 | mpbir2an 710 | 1 ⊢ 𝐹:ℝ–onto→𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ⊆ wss 3945 {csn 4624 class class class wbr 5142 ↦ cmpt 5225 ◡ccnv 5671 ran crn 5673 ↾ cres 5674 “ cima 5675 Fn wfn 6537 ⟶wf 6538 –onto→wfo 6540 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 ℝcr 11131 0cc0 11132 1c1 11133 ici 11134 + caddc 11135 · cmul 11137 ℝ*cxr 11271 < clt 11272 ≤ cle 11273 2c2 12291 (,]cioc 13351 abscabs 15207 expce 16031 πcpi 16036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ioo 13354 df-ioc 13355 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-fac 14259 df-bc 14288 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-ef 16037 df-sin 16039 df-cos 16040 df-pi 16042 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-lp 23033 df-perf 23034 df-cn 23124 df-cnp 23125 df-haus 23212 df-tx 23459 df-hmeo 23652 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-limc 25788 df-dv 25789 |
This theorem is referenced by: circgrp 26479 circsubm 26480 circtopn 33432 circcn 33433 |
Copyright terms: Public domain | W3C validator |