MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efifo Structured version   Visualization version   GIF version

Theorem efifo 26474
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
efifo.1 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧)))
efifo.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efifo 𝐹:ℝ–onto𝐶
Distinct variable group:   𝑧,𝐶
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem efifo
StepHypRef Expression
1 efifo.1 . . . 4 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧)))
2 ax-icn 11191 . . . . . . . 8 i ∈ ℂ
3 recn 11222 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
4 mulcl 11216 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
52, 3, 4sylancr 586 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
6 efcl 16052 . . . . . . 7 ((i · 𝑧) ∈ ℂ → (exp‘(i · 𝑧)) ∈ ℂ)
75, 6syl 17 . . . . . 6 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ ℂ)
8 absefi 16166 . . . . . 6 (𝑧 ∈ ℝ → (abs‘(exp‘(i · 𝑧))) = 1)
9 absf 15310 . . . . . . 7 abs:ℂ⟶ℝ
10 ffn 6716 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
11 fniniseg 7063 . . . . . . 7 (abs Fn ℂ → ((exp‘(i · 𝑧)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1)))
129, 10, 11mp2b 10 . . . . . 6 ((exp‘(i · 𝑧)) ∈ (abs “ {1}) ↔ ((exp‘(i · 𝑧)) ∈ ℂ ∧ (abs‘(exp‘(i · 𝑧))) = 1))
137, 8, 12sylanbrc 582 . . . . 5 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ (abs “ {1}))
14 efifo.2 . . . . 5 𝐶 = (abs “ {1})
1513, 14eleqtrrdi 2840 . . . 4 (𝑧 ∈ ℝ → (exp‘(i · 𝑧)) ∈ 𝐶)
161, 15fmpti 7116 . . 3 𝐹:ℝ⟶𝐶
17 ffn 6716 . . 3 (𝐹:ℝ⟶𝐶𝐹 Fn ℝ)
1816, 17ax-mp 5 . 2 𝐹 Fn ℝ
19 frn 6723 . . . 4 (𝐹:ℝ⟶𝐶 → ran 𝐹𝐶)
2016, 19ax-mp 5 . . 3 ran 𝐹𝐶
21 df-ima 5685 . . . . 5 (𝐹 “ (0(,](2 · π))) = ran (𝐹 ↾ (0(,](2 · π)))
221reseq1i 5975 . . . . . . . 8 (𝐹 ↾ (0(,](2 · π))) = ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π)))
23 0xr 11285 . . . . . . . . . . . 12 0 ∈ ℝ*
24 2re 12310 . . . . . . . . . . . . 13 2 ∈ ℝ
25 pire 26386 . . . . . . . . . . . . 13 π ∈ ℝ
2624, 25remulcli 11254 . . . . . . . . . . . 12 (2 · π) ∈ ℝ
27 elioc2 13413 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ) → (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ (2 · π))))
2823, 26, 27mp2an 691 . . . . . . . . . . 11 (𝑧 ∈ (0(,](2 · π)) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ (2 · π)))
2928simp1bi 1143 . . . . . . . . . 10 (𝑧 ∈ (0(,](2 · π)) → 𝑧 ∈ ℝ)
3029ssriv 3982 . . . . . . . . 9 (0(,](2 · π)) ⊆ ℝ
31 resmpt 6035 . . . . . . . . 9 ((0(,](2 · π)) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))))
3230, 31ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3322, 32eqtri 2756 . . . . . . 7 (𝐹 ↾ (0(,](2 · π))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3433rneqi 5933 . . . . . 6 ran (𝐹 ↾ (0(,](2 · π))) = ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
35 0re 11240 . . . . . . . 8 0 ∈ ℝ
36 eqid 2728 . . . . . . . . 9 (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧)))
3726recni 11252 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
3837addlidi 11426 . . . . . . . . . . 11 (0 + (2 · π)) = (2 · π)
3938oveq2i 7425 . . . . . . . . . 10 (0(,](0 + (2 · π))) = (0(,](2 · π))
4039eqcomi 2737 . . . . . . . . 9 (0(,](2 · π)) = (0(,](0 + (2 · π)))
4136, 14, 40efif1o 26473 . . . . . . . 8 (0 ∈ ℝ → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶)
4235, 41ax-mp 5 . . . . . . 7 (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶
43 f1ofo 6840 . . . . . . 7 ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–1-1-onto𝐶 → (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto𝐶)
44 forn 6808 . . . . . . 7 ((𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))):(0(,](2 · π))–onto𝐶 → ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶)
4542, 43, 44mp2b 10 . . . . . 6 ran (𝑧 ∈ (0(,](2 · π)) ↦ (exp‘(i · 𝑧))) = 𝐶
4634, 45eqtri 2756 . . . . 5 ran (𝐹 ↾ (0(,](2 · π))) = 𝐶
4721, 46eqtri 2756 . . . 4 (𝐹 “ (0(,](2 · π))) = 𝐶
48 imassrn 6068 . . . 4 (𝐹 “ (0(,](2 · π))) ⊆ ran 𝐹
4947, 48eqsstrri 4013 . . 3 𝐶 ⊆ ran 𝐹
5020, 49eqssi 3994 . 2 ran 𝐹 = 𝐶
51 df-fo 6548 . 2 (𝐹:ℝ–onto𝐶 ↔ (𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶))
5218, 50, 51mpbir2an 710 1 𝐹:ℝ–onto𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wss 3945  {csn 4624   class class class wbr 5142  cmpt 5225  ccnv 5671  ran crn 5673  cres 5674  cima 5675   Fn wfn 6537  wf 6538  ontowfo 6540  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  0cc0 11132  1c1 11133  ici 11134   + caddc 11135   · cmul 11137  *cxr 11271   < clt 11272  cle 11273  2c2 12291  (,]cioc 13351  abscabs 15207  expce 16031  πcpi 16036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-ef 16037  df-sin 16039  df-cos 16040  df-pi 16042  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-limc 25788  df-dv 25789
This theorem is referenced by:  circgrp  26479  circsubm  26480  circtopn  33432  circcn  33433
  Copyright terms: Public domain W3C validator