MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   GIF version

Definition df-fm 23855
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Distinct variable group:   𝑡,𝑓,𝑥,𝑦

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 23850 . 2 class FilMap
2 vx . . 3 setvar 𝑥
3 vf . . 3 setvar 𝑓
4 cvv 3471 . . 3 class V
5 vy . . . 4 setvar 𝑦
63cv 1533 . . . . . 6 class 𝑓
76cdm 5678 . . . . 5 class dom 𝑓
8 cfbas 21267 . . . . 5 class fBas
97, 8cfv 6548 . . . 4 class (fBas‘dom 𝑓)
102cv 1533 . . . . 5 class 𝑥
11 vt . . . . . . 7 setvar 𝑡
125cv 1533 . . . . . . 7 class 𝑦
1311cv 1533 . . . . . . . 8 class 𝑡
146, 13cima 5681 . . . . . . 7 class (𝑓𝑡)
1511, 12, 14cmpt 5231 . . . . . 6 class (𝑡𝑦 ↦ (𝑓𝑡))
1615crn 5679 . . . . 5 class ran (𝑡𝑦 ↦ (𝑓𝑡))
17 cfg 21268 . . . . 5 class filGen
1810, 16, 17co 7420 . . . 4 class (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))
195, 9, 18cmpt 5231 . . 3 class (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡))))
202, 3, 4, 4, 19cmpo 7422 . 2 class (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
211, 20wceq 1534 1 wff FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Colors of variables: wff setvar class
This definition is referenced by:  fmval  23860  fmf  23862
  Copyright terms: Public domain W3C validator