![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgredlemf | Structured version Visualization version GIF version |
Description: Lemma for efgredleme 19691. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
Ref | Expression |
---|---|
efgredlemf | ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgredlem.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
2 | efgval.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
3 | efgval.r | . . . . . . . 8 ⊢ ∼ = ( ~FG ‘𝐼) | |
4 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
5 | efgval2.t | . . . . . . . 8 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
6 | efgred.d | . . . . . . . 8 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
7 | efgred.s | . . . . . . . 8 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
8 | 2, 3, 4, 5, 6, 7 | efgsdm 19678 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴‘𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1))))) |
9 | 8 | simp1bi 1143 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑆 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
11 | 10 | eldifad 3956 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Word 𝑊) |
12 | wrdf 14495 | . . . 4 ⊢ (𝐴 ∈ Word 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) |
14 | fzossfz 13677 | . . . . 5 ⊢ (0..^((♯‘𝐴) − 1)) ⊆ (0...((♯‘𝐴) − 1)) | |
15 | lencl 14509 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
16 | 11, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
17 | 16 | nn0zd 12608 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
18 | fzoval 13659 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) |
20 | 14, 19 | sseqtrrid 4031 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴))) |
21 | efgredlemb.k | . . . . 5 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
22 | efgredlem.1 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
23 | efgredlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
24 | efgredlem.4 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
25 | efgredlem.5 | . . . . . . . 8 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
26 | 2, 3, 4, 5, 6, 7, 22, 1, 23, 24, 25 | efgredlema 19688 | . . . . . . 7 ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) |
27 | 26 | simpld 494 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ) |
28 | fzo0end 13750 | . . . . . 6 ⊢ (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1))) | |
29 | 27, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1))) |
30 | 21, 29 | eqeltrid 2832 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (0..^((♯‘𝐴) − 1))) |
31 | 20, 30 | sseldd 3979 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (0..^(♯‘𝐴))) |
32 | 13, 31 | ffvelcdmd 7089 | . 2 ⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
33 | 2, 3, 4, 5, 6, 7 | efgsdm 19678 | . . . . . . 7 ⊢ (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵‘𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1))))) |
34 | 33 | simp1bi 1143 | . . . . . 6 ⊢ (𝐵 ∈ dom 𝑆 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
35 | 23, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (Word 𝑊 ∖ {∅})) |
36 | 35 | eldifad 3956 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Word 𝑊) |
37 | wrdf 14495 | . . . 4 ⊢ (𝐵 ∈ Word 𝑊 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) | |
38 | 36, 37 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:(0..^(♯‘𝐵))⟶𝑊) |
39 | fzossfz 13677 | . . . . 5 ⊢ (0..^((♯‘𝐵) − 1)) ⊆ (0...((♯‘𝐵) − 1)) | |
40 | lencl 14509 | . . . . . . . 8 ⊢ (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0) | |
41 | 36, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
42 | 41 | nn0zd 12608 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℤ) |
43 | fzoval 13659 | . . . . . 6 ⊢ ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) | |
44 | 42, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1))) |
45 | 39, 44 | sseqtrrid 4031 | . . . 4 ⊢ (𝜑 → (0..^((♯‘𝐵) − 1)) ⊆ (0..^(♯‘𝐵))) |
46 | efgredlemb.l | . . . . 5 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
47 | fzo0end 13750 | . . . . . 6 ⊢ (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1))) | |
48 | 26, 47 | simpl2im 503 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1))) |
49 | 46, 48 | eqeltrid 2832 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (0..^((♯‘𝐵) − 1))) |
50 | 45, 49 | sseldd 3979 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (0..^(♯‘𝐵))) |
51 | 38, 50 | ffvelcdmd 7089 | . 2 ⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
52 | 32, 51 | jca 511 | 1 ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 ∖ cdif 3941 ∅c0 4318 {csn 4624 〈cop 4630 〈cotp 4632 ∪ ciun 4991 class class class wbr 5142 ↦ cmpt 5225 I cid 5569 × cxp 5670 dom cdm 5672 ran crn 5673 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 1oc1o 8473 2oc2o 8474 0cc0 11132 1c1 11133 < clt 11272 − cmin 11468 ℕcn 12236 ℕ0cn0 12496 ℤcz 12582 ...cfz 13510 ..^cfzo 13653 ♯chash 14315 Word cword 14490 splice csplice 14725 〈“cs2 14818 ~FG cefg 19654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-hash 14316 df-word 14491 |
This theorem is referenced by: efgredlemg 19690 efgredleme 19691 |
Copyright terms: Public domain | W3C validator |