![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version |
Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iswrd 14492 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
3 | fnfzo0hash 14435 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
4 | 3 | oveq2d 7430 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
5 | 4 | feq2d 6702 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
7 | 6 | rexlimiva 3142 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∃wrex 3065 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 0cc0 11132 ℕ0cn0 12496 ..^cfzo 13653 ♯chash 14315 Word cword 14490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-hash 14316 df-word 14491 |
This theorem is referenced by: iswrdb 14496 wrddm 14497 wrdsymbcl 14503 wrdfn 14504 wrdffz 14511 0wrd0 14516 wrdsymb 14518 wrdnval 14521 wrdred1 14536 wrdred1hash 14537 ccatcl 14550 ccatalpha 14569 s1dm 14584 swrdcl 14621 swrdf 14626 swrdwrdsymb 14638 pfxres 14655 cats1un 14697 revcl 14737 revlen 14738 revrev 14743 repsdf2 14754 cshwf 14776 cshinj 14787 wrdco 14808 lenco 14809 revco 14811 ccatco 14812 lswco 14816 s2dm 14867 wwlktovf 14933 ofccat 14942 gsumwsubmcl 18782 gsumsgrpccat 18785 gsumwmhm 18790 frmdss2 18808 symgtrinv 19420 psgnunilem5 19442 psgnunilem2 19443 psgnunilem3 19444 efginvrel1 19676 efgsf 19677 efgsrel 19682 efgs1b 19684 efgredlemf 19689 efgredlemd 19692 efgredlemc 19693 efgredlem 19695 frgpup3lem 19725 pgpfaclem1 20031 ablfaclem2 20036 ablfaclem3 20037 ablfac2 20039 dchrptlem1 27190 dchrptlem2 27191 trgcgrg 28312 tgcgr4 28328 wrdupgr 28891 wrdumgr 28903 vdegp1ai 29343 vdegp1bi 29344 wlkres 29477 wlkp1 29488 wlkdlem1 29489 trlf1 29505 trlreslem 29506 upgrwlkdvdelem 29543 pthdlem1 29573 pthdlem2lem 29574 uspgrn2crct 29612 wlkiswwlks2lem3 29675 wlkiswwlksupgr2 29681 clwlkclwwlklem2a 29801 clwlkclwwlklem2 29803 1wlkdlem1 29940 wlk2v2e 29960 eucrctshift 30046 konigsbergssiedgw 30053 wrdfd 32653 wrdres 32654 pfxf1 32659 s3f1 32664 ccatf1 32666 swrdrn3 32670 cycpmcl 32831 tocyc01 32833 cycpmco2rn 32840 cycpmrn 32858 tocyccntz 32859 cycpmconjslem2 32870 sseqf 34002 fiblem 34008 ofcccat 34165 signstcl 34187 signstf 34188 signstfvn 34191 signsvtn0 34192 signstres 34197 signsvtp 34205 signsvtn 34206 signsvfpn 34207 signsvfnn 34208 signshf 34210 revwlk 34724 mvrsfpw 35106 frlmfzowrdb 41716 amgm2d 43600 amgm3d 43601 amgm4d 43602 lswn0 46756 amgmw2d 48209 |
Copyright terms: Public domain | W3C validator |