![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revlen | Structured version Visualization version GIF version |
Description: The reverse of a word has the same length as the original. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
revlen | ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | revval 14734 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | |
2 | 1 | fveq2d 6895 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))) |
3 | wrdf 14493 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(♯‘𝑊))⟶𝐴) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊:(0..^(♯‘𝑊))⟶𝐴) |
5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊))) | |
6 | lencl 14507 | . . . . . . . . . 10 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0) | |
7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ0) |
8 | nn0z 12605 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ) | |
9 | fzoval 13657 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) | |
10 | 7, 8, 9 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
11 | 5, 10 | eleqtrd 2830 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1))) |
12 | fznn0sub2 13632 | . . . . . . 7 ⊢ (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1))) |
14 | 13, 10 | eleqtrrd 2831 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) |
15 | 4, 14 | ffvelcdmd 7089 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − 𝑥)) ∈ 𝐴) |
16 | 15 | fmpttd 7119 | . . 3 ⊢ (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴) |
17 | ffn 6716 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))):(0..^(♯‘𝑊))⟶𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) Fn (0..^(♯‘𝑊))) | |
18 | hashfn 14358 | . . 3 ⊢ ((𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))) Fn (0..^(♯‘𝑊)) → (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) = (♯‘(0..^(♯‘𝑊)))) | |
19 | 16, 17, 18 | 3syl 18 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) = (♯‘(0..^(♯‘𝑊)))) |
20 | hashfzo0 14413 | . . 3 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
21 | 6, 20 | syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
22 | 2, 19, 21 | 3eqtrd 2771 | 1 ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5225 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 0cc0 11130 1c1 11131 − cmin 11466 ℕ0cn0 12494 ℤcz 12580 ...cfz 13508 ..^cfzo 13651 ♯chash 14313 Word cword 14488 reversecreverse 14732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-fzo 13652 df-hash 14314 df-word 14489 df-reverse 14733 |
This theorem is referenced by: rev0 14738 revs1 14739 revccat 14740 revrev 14741 revco 14809 psgnuni 19445 revpfxsfxrev 34661 swrdrevpfx 34662 revwlk 34670 swrdwlk 34672 |
Copyright terms: Public domain | W3C validator |