![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irredcl | Structured version Visualization version GIF version |
Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredcl.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
irredcl | ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2728 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | irredn0.i | . . 3 ⊢ 𝐼 = (Irred‘𝑅) | |
4 | eqid 2728 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isirred2 20354 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (Unit‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 𝑋 → (𝑥 ∈ (Unit‘𝑅) ∨ 𝑦 ∈ (Unit‘𝑅))))) |
6 | 5 | simp1bi 1143 | 1 ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 .rcmulr 17228 Unitcui 20288 Irredcir 20289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7418 df-irred 20292 |
This theorem is referenced by: irredrmul 20360 irredneg 20363 prmirred 21394 irredminply 33379 |
Copyright terms: Public domain | W3C validator |