![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | issubg 19075 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp1bi 1143 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3945 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 ↾s cress 17203 Grpcgrp 18884 SubGrpcsubg 19069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7418 df-subg 19072 |
This theorem is referenced by: subg0 19081 subginv 19082 subgmulgcl 19088 subgsubm 19097 subsubg 19098 subgint 19099 isnsg 19104 nsgconj 19108 isnsg3 19109 ssnmz 19115 nmznsg 19117 eqger 19127 eqgid 19129 eqgen 19130 eqgcpbl 19131 qusgrp 19135 quseccl 19136 qusadd 19137 qus0 19138 qusinv 19139 qussub 19140 ecqusaddcl 19142 resghm2 19181 resghm2b 19182 conjsubg 19198 conjsubgen 19199 conjnmz 19200 conjnmzb 19201 qusghm 19203 ghmquskerlem3 19231 subgga 19245 gastacos 19255 orbstafun 19256 cntrsubgnsg 19288 oppgsubg 19311 isslw 19557 sylow2blem1 19569 sylow2blem2 19570 sylow2blem3 19571 slwhash 19573 lsmval 19597 lsmelval 19598 lsmelvali 19599 lsmelvalm 19600 lsmsubg 19603 lsmless1 19609 lsmless2 19610 lsmless12 19611 lsmass 19618 lsm01 19620 lsm02 19621 subglsm 19622 lsmmod 19624 lsmcntz 19628 lsmcntzr 19629 lsmdisj2 19631 subgdisj1 19640 pj1f 19646 pj1id 19648 pj1lid 19650 pj1rid 19651 pj1ghm 19652 subgdmdprd 19985 subgdprd 19986 dprdsn 19987 pgpfaclem2 20033 cldsubg 24009 gsumsubg 32755 qusker 33056 grplsmid 33108 quslsm 33110 qus0g 33112 qusrn 33114 nsgqus0 33115 nsgmgclem 33116 nsgqusf1olem1 33118 nsgqusf1olem2 33119 nsgqusf1olem3 33120 ghmqusnsg 33126 |
Copyright terms: Public domain | W3C validator |