![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trgtgp | Structured version Visualization version GIF version |
Description: A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
trgtgp | ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | istrg 24081 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
3 | 2 | simp1bi 1143 | 1 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ‘cfv 6548 mulGrpcmgp 20074 Ringcrg 20173 TopMndctmd 23987 TopGrpctgp 23988 TopRingctrg 24073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-trg 24077 |
This theorem is referenced by: trgtmd2 24086 trgtps 24087 pl1cn 33556 |
Copyright terms: Public domain | W3C validator |