![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trgtmd2 | Structured version Visualization version GIF version |
Description: A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
trgtmd2 | ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trgtgp 24085 | . 2 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) | |
2 | tgptmd 23996 | . 2 ⊢ (𝑅 ∈ TopGrp → 𝑅 ∈ TopMnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 TopMndctmd 23987 TopGrpctgp 23988 TopRingctrg 24073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-tgp 23990 df-trg 24077 |
This theorem is referenced by: tdrgtmd 24093 qqhcn 33592 |
Copyright terms: Public domain | W3C validator |