![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqnetrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqnetrrd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
eqnetrrd | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqcomd 2733 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | eqnetrrd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
4 | 2, 3 | eqnetrd 3003 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ≠ wne 2935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2719 df-ne 2936 |
This theorem is referenced by: eqnetrrid 3011 3netr3d 3012 cantnflem1c 9702 eqsqrt2d 15339 tanval2 16101 tanval3 16102 tanhlt1 16128 pcadd 16849 efgsres 19684 gsumval3 19853 ablfac 20036 ablsimpgfind 20058 isdrngrd 20647 isdrngrdOLD 20649 lspsneq 20999 lebnumlem3 24876 minveclem4a 25345 evthicc 25375 ioorf 25489 deg1ldgn 26016 fta1blem 26092 vieta1lem1 26232 vieta1lem2 26233 vieta1 26234 tanregt0 26460 isosctrlem2 26738 angpieqvd 26750 chordthmlem2 26752 dcubic2 26763 dquartlem1 26770 dquart 26772 asinlem 26787 atandmcj 26828 2efiatan 26837 tanatan 26838 dvatan 26854 dmgmn0 26945 dmgmdivn0 26947 lgamgulmlem2 26949 gamne0 26965 nosep1o 27601 noetasuplem4 27656 footexALT 28509 footexlem1 28510 footexlem2 28511 ttgcontlem1 28682 wlkn0 29422 nrt2irr 30270 fsuppcurry1 32491 fsuppcurry2 32492 bcm1n 32547 mxidlirred 33121 irngnminplynz 33318 minplym1p 33319 algextdeglem4 33324 zarclssn 33410 sibfof 33896 finxpreclem2 36805 poimirlem9 37037 heicant 37063 heiborlem6 37224 lkrlspeqN 38580 cdlemg18d 40091 cdlemg21 40096 dibord 40569 lclkrlem2u 40937 lcfrlem9 40960 mapdindp4 41133 hdmaprnlem3uN 41261 hdmaprnlem9N 41267 fsuppind 41745 binomcxplemnotnn0 43716 dstregt0 44586 stoweidlem31 45342 stoweidlem59 45370 wallispilem4 45379 dirkertrigeqlem2 45410 fourierdlem43 45461 fourierdlem65 45482 catprs 47940 |
Copyright terms: Public domain | W3C validator |