![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evthicc | Structured version Visualization version GIF version |
Description: Specialization of the Extreme Value Theorem to a closed interval of ℝ. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
evthicc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
evthicc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
evthicc.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
evthicc.4 | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
Ref | Expression |
---|---|
evthicc | ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . 4 ⊢ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) | |
2 | eqid 2727 | . . . 4 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
3 | evthicc.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | evthicc.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | eqid 2727 | . . . . . 6 ⊢ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) | |
6 | 2, 5 | icccmp 24728 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp) |
7 | 3, 4, 6 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp) |
8 | evthicc.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
9 | iccssre 13430 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
10 | 3, 4, 9 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
11 | ax-resscn 11187 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
12 | 10, 11 | sstrdi 3990 | . . . . . . 7 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
13 | eqid 2727 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) = ((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))) | |
14 | eqid 2727 | . . . . . . . 8 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
15 | eqid 2727 | . . . . . . . 8 ⊢ (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) | |
16 | eqid 2727 | . . . . . . . . 9 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
17 | 14, 16 | tgioo 24699 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
18 | 13, 14, 15, 17 | cncfmet 24816 | . . . . . . 7 ⊢ (((𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,)))) |
19 | 12, 11, 18 | sylancl 585 | . . . . . 6 ⊢ (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,)))) |
20 | 2, 15 | resubmet 24705 | . . . . . . . 8 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
21 | 10, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
22 | 21 | oveq1d 7429 | . . . . . 6 ⊢ (𝜑 → ((MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
23 | 19, 22 | eqtrd 2767 | . . . . 5 ⊢ (𝜑 → ((𝐴[,]𝐵)–cn→ℝ) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
24 | 8, 23 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (topGen‘ran (,)))) |
25 | retop 24665 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
26 | uniretop 24666 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
27 | 26 | restuni 23053 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴[,]𝐵) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
28 | 25, 10, 27 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) = ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) |
29 | 3 | rexrd 11286 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
30 | 4 | rexrd 11286 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
31 | evthicc.3 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
32 | lbicc2 13465 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
33 | 29, 30, 31, 32 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
34 | 33 | ne0d 4331 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) ≠ ∅) |
35 | 28, 34 | eqnetrrd 3004 | . . . 4 ⊢ (𝜑 → ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ≠ ∅) |
36 | 1, 2, 7, 24, 35 | evth 24872 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥)) |
37 | 28 | raleqdv 3320 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ↔ ∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
38 | 28, 37 | rexeqbidv 3338 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ↔ ∃𝑥 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑦 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
39 | 36, 38 | mpbird 257 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥)) |
40 | 1, 2, 7, 24, 35 | evth2 24873 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤)) |
41 | 28 | raleqdv 3320 | . . . 4 ⊢ (𝜑 → (∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤) ↔ ∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
42 | 28, 41 | rexeqbidv 3338 | . . 3 ⊢ (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤) ↔ ∃𝑧 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))∀𝑤 ∈ ∪ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
43 | 40, 42 | mpbird 257 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤)) |
44 | 39, 43 | jca 511 | 1 ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ⊆ wss 3944 ∅c0 4318 ∪ cuni 4903 class class class wbr 5142 × cxp 5670 ran crn 5673 ↾ cres 5674 ∘ ccom 5676 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 ℝcr 11129 ℝ*cxr 11269 ≤ cle 11271 − cmin 11466 (,)cioo 13348 [,]cicc 13351 abscabs 15205 ↾t crest 17393 topGenctg 17410 MetOpencmopn 21256 Topctop 22782 Cn ccn 23115 Compccmp 23277 –cn→ccncf 24783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-icc 13355 df-fz 13509 df-fzo 13652 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-rest 17395 df-topn 17396 df-0g 17414 df-gsum 17415 df-topgen 17416 df-pt 17417 df-prds 17420 df-xrs 17475 df-qtop 17480 df-imas 17481 df-xps 17483 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-mulg 19015 df-cntz 19259 df-cmn 19728 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cn 23118 df-cnp 23119 df-cmp 23278 df-tx 23453 df-hmeo 23646 df-xms 24213 df-ms 24214 df-tms 24215 df-cncf 24785 |
This theorem is referenced by: evthicc2 25376 cniccbdd 25377 rolle 25909 dvivthlem1 25928 itgsubst 25971 evthiccabs 44804 cncficcgt0 45199 |
Copyright terms: Public domain | W3C validator |