MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngrdOLD Structured version   Visualization version   GIF version

Theorem isdrngrdOLD 20649
Description: Obsolete version of isdrngrd 20647 as of 19-Feb-2025. (Contributed by NM, 10-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
isdrngdOLD.b (𝜑𝐵 = (Base‘𝑅))
isdrngdOLD.t (𝜑· = (.r𝑅))
isdrngdOLD.z (𝜑0 = (0g𝑅))
isdrngdOLD.u (𝜑1 = (1r𝑅))
isdrngdOLD.r (𝜑𝑅 ∈ Ring)
isdrngdOLD.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngdOLD.o (𝜑10 )
isdrngdOLD.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngdOLD.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngrdOLD.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
Assertion
Ref Expression
isdrngrdOLD (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngrdOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngdOLD.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
2 eqid 2727 . . . . 5 (oppr𝑅) = (oppr𝑅)
3 eqid 2727 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
42, 3opprbas 20269 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑅))
51, 4eqtrdi 2783 . . 3 (𝜑𝐵 = (Base‘(oppr𝑅)))
6 eqidd 2728 . . 3 (𝜑 → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
7 isdrngdOLD.z . . . 4 (𝜑0 = (0g𝑅))
8 eqid 2727 . . . . 5 (0g𝑅) = (0g𝑅)
92, 8oppr0 20277 . . . 4 (0g𝑅) = (0g‘(oppr𝑅))
107, 9eqtrdi 2783 . . 3 (𝜑0 = (0g‘(oppr𝑅)))
11 isdrngdOLD.u . . . 4 (𝜑1 = (1r𝑅))
12 eqid 2727 . . . . 5 (1r𝑅) = (1r𝑅)
132, 12oppr1 20278 . . . 4 (1r𝑅) = (1r‘(oppr𝑅))
1411, 13eqtrdi 2783 . . 3 (𝜑1 = (1r‘(oppr𝑅)))
15 isdrngdOLD.r . . . 4 (𝜑𝑅 ∈ Ring)
162opprring 20275 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
1715, 16syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
18 eleq1w 2811 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
19 neeq1 2998 . . . . . . 7 (𝑦 = 𝑥 → (𝑦0𝑥0 ))
2018, 19anbi12d 630 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐵𝑦0 ) ↔ (𝑥𝐵𝑥0 )))
21203anbi2d 1438 . . . . 5 (𝑦 = 𝑥 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) ↔ (𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 ))))
22 oveq1 7421 . . . . . 6 (𝑦 = 𝑥 → (𝑦(.r‘(oppr𝑅))𝑧) = (𝑥(.r‘(oppr𝑅))𝑧))
2322neeq1d 2995 . . . . 5 (𝑦 = 𝑥 → ((𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ↔ (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 ))
2421, 23imbi12d 344 . . . 4 (𝑦 = 𝑥 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ) ↔ ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )))
25 eleq1w 2811 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
26 neeq1 2998 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥0𝑧0 ))
2725, 26anbi12d 630 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐵𝑥0 ) ↔ (𝑧𝐵𝑧0 )))
28273anbi3d 1439 . . . . . 6 (𝑥 = 𝑧 → ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) ↔ (𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 ))))
29 oveq2 7422 . . . . . . 7 (𝑥 = 𝑧 → (𝑦(.r‘(oppr𝑅))𝑥) = (𝑦(.r‘(oppr𝑅))𝑧))
3029neeq1d 2995 . . . . . 6 (𝑥 = 𝑧 → ((𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ↔ (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 ))
3128, 30imbi12d 344 . . . . 5 (𝑥 = 𝑧 → (((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 ) ↔ ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )))
32 isdrngdOLD.t . . . . . . . . . 10 (𝜑· = (.r𝑅))
33323ad2ant1 1131 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → · = (.r𝑅))
3433oveqd 7431 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
35 eqid 2727 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
36 eqid 2727 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
373, 35, 2, 36opprmul 20265 . . . . . . . 8 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝑦)
3834, 37eqtr4di 2785 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) = (𝑦(.r‘(oppr𝑅))𝑥))
39 isdrngdOLD.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
4038, 39eqnetrrd 3004 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
41403com23 1124 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑥𝐵𝑥0 )) → (𝑦(.r‘(oppr𝑅))𝑥) ≠ 0 )
4231, 41chvarvv 1995 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r‘(oppr𝑅))𝑧) ≠ 0 )
4324, 42chvarvv 1995 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑥(.r‘(oppr𝑅))𝑧) ≠ 0 )
44 isdrngdOLD.o . . 3 (𝜑10 )
45 isdrngdOLD.i . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
46 isdrngdOLD.j . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
473, 35, 2, 36opprmul 20265 . . . 4 (𝐼(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)𝐼)
4832adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → · = (.r𝑅))
4948oveqd 7431 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = (𝑥(.r𝑅)𝐼))
50 isdrngrdOLD.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )
5149, 50eqtr3d 2769 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥(.r𝑅)𝐼) = 1 )
5247, 51eqtrid 2779 . . 3 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼(.r‘(oppr𝑅))𝑥) = 1 )
535, 6, 10, 14, 17, 43, 44, 45, 46, 52isdrngdOLD 20648 . 2 (𝜑 → (oppr𝑅) ∈ DivRing)
542opprdrng 20645 . 2 (𝑅 ∈ DivRing ↔ (oppr𝑅) ∈ DivRing)
5553, 54sylibr 233 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  cfv 6542  (class class class)co 7414  Basecbs 17171  .rcmulr 17225  0gc0g 17412  1rcur 20112  Ringcrg 20164  opprcoppr 20261  DivRingcdr 20613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-0g 17414  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-grp 18884  df-minusg 18885  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-drng 20615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator