![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com23 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 9-Apr-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com23 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3comr 1123 | . 2 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com12 1121 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3coml 1125 3anidm13 1418 eqreu 3722 f1ofveu 7408 curry2f 8107 dfsmo2 8361 nneob 8670 nadd32 8711 f1oeng 8983 domnsymfi 9219 sdomdomtrfi 9220 domsdomtrfi 9221 php 9226 php3 9228 suppr 9486 infdif 10224 axdclem2 10535 gchen1 10640 grumap 10823 grudomon 10832 mul32 11402 add32 11454 subsub23 11487 subadd23 11494 addsub12 11495 subsub 11512 subsub3 11514 sub32 11516 suble 11714 lesub 11715 ltsub23 11716 ltsub13 11717 ltleadd 11719 div32 11914 div13 11915 div12 11916 divdiv32 11944 cju 12230 infssuzle 12937 ioo0 13373 ico0 13394 ioc0 13395 icc0 13396 fzen 13542 modcyc 13895 expgt0 14084 expge0 14087 expge1 14088 2cshwcom 14790 shftval2 15046 abs3dif 15302 divalgb 16372 submrc 17599 mrieqv2d 17610 pltnlt 18323 pltn2lp 18324 tosso 18402 latnle 18456 latabs1 18458 lubel 18497 ipopos 18519 grpinvcnv 18954 mulgaddcom 19044 mulgneg2 19054 oppgmnd 19299 oddvdsnn0 19490 oddvds 19493 odmulg 19502 odcl2 19511 lsmcomx 19802 srgcom4 20145 srgrmhm 20153 ringcom 20205 mulgass2 20234 opprrng 20273 irredrmul 20355 irredlmul 20356 isdrngrd 20647 isdrngrdOLD 20649 islmodd 20738 lmodcom 20780 rmodislmod 20802 rmodislmodOLD 20803 opprdomn 21239 zntoslem 21477 ipcl 21552 maducoevalmin1 22541 rintopn 22798 opnnei 23011 restin 23057 cnpnei 23155 cnprest 23180 ordthaus 23275 kgen2ss 23446 hausflim 23872 fclsfnflim 23918 cnpfcf 23932 opnsubg 23999 cuspcvg 24193 psmetsym 24203 xmetsym 24240 ngpdsr 24501 ngpds2r 24503 ngpds3r 24505 clmmulg 25015 cphipval2 25156 iscau2 25192 dgr1term 26181 cxpeq0 26599 cxpge0 26604 relogbzcl 26693 negsunif 27954 grpoidinvlem2 30302 grpoinvdiv 30334 nvpncan 30451 nvabs 30469 ipval2lem2 30501 dipcj 30511 diporthcom 30513 dipdi 30640 dipassr 30643 dipsubdi 30646 hlipcj 30708 hvadd32 30831 hvsub32 30842 his5 30883 hoadd32 31580 hosubsub 31614 unopf1o 31713 adj2 31731 adjvalval 31734 adjlnop 31883 leopmul2i 31932 cvntr 32089 mdsymlem5 32204 sumdmdii 32212 supxrnemnf 32522 odutos 32677 tlt2 32678 tosglblem 32683 archiabl 32884 evls1fpws 33182 unitdivcld 33438 bnj605 34474 bnj607 34483 fisshasheq 34660 swrdrevpfx 34662 cusgredgex 34667 acycgr1v 34695 gcd32 35279 cgrrflx 35519 cgrcom 35522 cgrcomr 35529 btwntriv1 35548 cgr3com 35585 colineartriv2 35600 segleantisym 35647 seglelin 35648 btwnoutside 35657 clsint2 35749 dissneqlem 36755 ftc1anclem5 37105 heibor1 37218 rngoidl 37432 ispridlc 37478 opltcon3b 38613 cmtcomlemN 38657 cmtcomN 38658 cmt3N 38660 cmtbr3N 38663 cvrval2 38683 cvrnbtwn4 38688 leatb 38701 atlrelat1 38730 hlatlej2 38785 hlateq 38809 hlrelat5N 38811 snatpsubN 39160 pmap11 39172 paddcom 39223 sspadd2 39226 paddss12 39229 cdleme51finvN 39966 cdleme51finvtrN 39968 cdlemeiota 39995 cdlemg2jlemOLDN 40003 cdlemg2klem 40005 cdlemg4b1 40019 cdlemg4b2 40020 trljco2 40151 tgrpabl 40161 tendoplcom 40192 cdleml6 40391 erngdvlem3-rN 40408 dia11N 40458 dib11N 40570 dih11 40675 uzindd 41384 lcmineqlem1 41437 nerabdioph 42151 monotoddzzfi 42285 fzneg 42325 jm2.19lem2 42333 ismnushort 43661 nzss 43677 sineq0ALT 44299 lincvalsng 47407 reccot 48112 |
Copyright terms: Public domain | W3C validator |