![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp4 | Structured version Visualization version GIF version |
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
Ref | Expression |
---|---|
mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
mapdindp1.p | ⊢ + = (+g‘𝑊) |
mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
mapdindp4 | ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp1.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | mapdindp1.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
3 | mapdindp1.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | mapdindp1.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | mapdindp1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
6 | lveclmod 20991 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
8 | mapdindp1.W | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3959 | . . . 4 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
10 | mapdindp1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
11 | 10 | eldifad 3959 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
12 | mapdindp1.p | . . . . 5 ⊢ + = (+g‘𝑊) | |
13 | 1, 12 | lmodvacl 20758 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑤 + 𝑌) ∈ 𝑉) |
14 | 7, 9, 11, 13 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑤 + 𝑌) ∈ 𝑉) |
15 | mapdindp1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
16 | 15 | eldifad 3959 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
17 | mapdindp1.e | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
18 | mapdindp1.f | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
19 | 1, 3, 4, 9, 16, 11, 18 | lspindpi 21020 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
20 | 19 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
21 | 20 | necomd 2993 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
22 | 1, 12, 2, 3, 4, 11, 8, 21 | lspindp3 21024 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑌 + 𝑤)})) |
23 | 1, 12 | lmodcom 20791 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑤 + 𝑌) = (𝑌 + 𝑤)) |
24 | 7, 9, 11, 23 | syl3anc 1369 | . . . . . . 7 ⊢ (𝜑 → (𝑤 + 𝑌) = (𝑌 + 𝑤)) |
25 | 24 | sneqd 4641 | . . . . . 6 ⊢ (𝜑 → {(𝑤 + 𝑌)} = {(𝑌 + 𝑤)}) |
26 | 25 | fveq2d 6901 | . . . . 5 ⊢ (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) = (𝑁‘{(𝑌 + 𝑤)})) |
27 | 22, 26 | neeqtrrd 3012 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{(𝑤 + 𝑌)})) |
28 | 17, 27 | eqnetrrd 3006 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)})) |
29 | mapdindp1.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
30 | 1, 2, 3, 4, 15, 11, 9, 29, 18 | lspindp1 21021 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))) |
31 | 30 | simprd 495 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌})) |
32 | eqid 2728 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
33 | 5 | eldifad 3959 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
34 | 1, 3, 32, 7, 33, 14 | lsmpr 20974 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)}))) |
35 | 1, 12 | lmodcom 20791 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → (𝑌 + 𝑤) = (𝑤 + 𝑌)) |
36 | 7, 11, 9, 35 | syl3anc 1369 | . . . . . . . . 9 ⊢ (𝜑 → (𝑌 + 𝑤) = (𝑤 + 𝑌)) |
37 | 36 | preq2d 4745 | . . . . . . . 8 ⊢ (𝜑 → {𝑌, (𝑌 + 𝑤)} = {𝑌, (𝑤 + 𝑌)}) |
38 | 37 | fveq2d 6901 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, (𝑤 + 𝑌)})) |
39 | 1, 12, 3, 7, 11, 9 | lspprabs 20980 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, (𝑌 + 𝑤)}) = (𝑁‘{𝑌, 𝑤})) |
40 | 1, 3, 32, 7, 11, 14 | lsmpr 20974 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, (𝑤 + 𝑌)}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)}))) |
41 | 38, 39, 40 | 3eqtr3rd 2777 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑌, 𝑤})) |
42 | 17 | oveq1d 7435 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)}))) |
43 | prcom 4737 | . . . . . . . 8 ⊢ {𝑌, 𝑤} = {𝑤, 𝑌} | |
44 | 43 | fveq2i 6900 | . . . . . . 7 ⊢ (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌}) |
45 | 44 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌})) |
46 | 41, 42, 45 | 3eqtr3d 2776 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑍})(LSSum‘𝑊)(𝑁‘{(𝑤 + 𝑌)})) = (𝑁‘{𝑤, 𝑌})) |
47 | 34, 46 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑍, (𝑤 + 𝑌)}) = (𝑁‘{𝑤, 𝑌})) |
48 | 31, 47 | neleqtrrd 2852 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})) |
49 | 1, 2, 3, 4, 5, 14, 16, 28, 48 | lspindp1 21021 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))) |
50 | 49 | simprd 495 | 1 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∖ cdif 3944 {csn 4629 {cpr 4631 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 0gc0g 17421 LSSumclsm 19589 LModclmod 20743 LSpanclspn 20855 LVecclvec 20987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-subg 19078 df-cntz 19268 df-lsm 19591 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-drng 20626 df-lmod 20745 df-lss 20816 df-lsp 20856 df-lvec 20988 |
This theorem is referenced by: mapdh6eN 41213 hdmap1l6e 41287 |
Copyright terms: Public domain | W3C validator |