MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanval2 Structured version   Visualization version   GIF version

Theorem tanval2 16101
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanval2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))

Proof of Theorem tanval2
StepHypRef Expression
1 tanval 16096 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2 2cn 12309 . . . . . . 7 2 ∈ ℂ
3 ax-icn 11189 . . . . . . 7 i ∈ ℂ
42, 3mulcomi 11244 . . . . . 6 (2 · i) = (i · 2)
54oveq2i 7425 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2))
6 sinval 16090 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
76adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
8 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
9 mulcl 11214 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
103, 8, 9sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
11 efcl 16050 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (exp‘(i · 𝐴)) ∈ ℂ)
13 negicn 11483 . . . . . . . . 9 -i ∈ ℂ
14 mulcl 11214 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1513, 8, 14sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (-i · 𝐴) ∈ ℂ)
16 efcl 16050 . . . . . . . 8 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
1812, 17subcld 11593 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
193a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → i ∈ ℂ)
202a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 2 ∈ ℂ)
21 ine0 11671 . . . . . . 7 i ≠ 0
2221a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → i ≠ 0)
23 2ne0 12338 . . . . . . 7 2 ≠ 0
2423a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 2 ≠ 0)
2518, 19, 20, 22, 24divdiv1d 12043 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2)))
265, 7, 253eqtr4a 2793 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2))
27 cosval 16091 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2827adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2926, 28oveq12d 7432 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴) / (cos‘𝐴)) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
301, 29eqtrd 2767 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
3118, 19, 22divcld 12012 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈ ℂ)
3212, 17addcld 11255 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
33 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0)
3428, 33eqnetrrd 3004 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0)
3532, 20, 24diveq0ad 12022 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = 0 ↔ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) = 0))
3635necon3bid 2980 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ≠ 0 ↔ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0))
3734, 36mpbid 231 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ≠ 0)
3831, 32, 20, 37, 24divcan7d 12040 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3918, 19, 32, 22, 37divdiv1d 12043 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
4030, 38, 393eqtrd 2771 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  cfv 6542  (class class class)co 7414  cc 11128  0cc0 11130  ici 11132   + caddc 11133   · cmul 11135  cmin 11466  -cneg 11467   / cdiv 11893  2c2 12289  expce 16029  sincsin 16031  cosccos 16032  tanctan 16033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-ico 13354  df-fz 13509  df-fzo 13652  df-fl 13781  df-seq 13991  df-exp 14051  df-fac 14257  df-hash 14314  df-shft 15038  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-limsup 15439  df-clim 15456  df-rlim 15457  df-sum 15657  df-ef 16035  df-sin 16037  df-cos 16038  df-tan 16039
This theorem is referenced by:  tanval3  16102
  Copyright terms: Public domain W3C validator