![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem3uN | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
Ref | Expression |
---|---|
hdmaprnlem3uN | ⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmaprnlem1.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
3 | hdmaprnlem1.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | eqid 2727 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
5 | hdmaprnlem1.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 3, 5 | dvhlmod 40520 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
7 | hdmaprnlem1.ue | . . . 4 ⊢ (𝜑 → 𝑢 ∈ 𝑉) | |
8 | hdmaprnlem1.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
9 | hdmaprnlem1.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | 8, 4, 9 | lspsncl 20850 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉) → (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈)) |
11 | 6, 7, 10 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈)) |
12 | 1, 2, 3, 4, 5, 11 | mapdcnvid1N 41064 | . 2 ⊢ (𝜑 → (◡𝑀‘(𝑀‘(𝑁‘{𝑢}))) = (𝑁‘{𝑢})) |
13 | hdmaprnlem1.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
14 | hdmaprnlem1.l | . . . . 5 ⊢ 𝐿 = (LSpan‘𝐶) | |
15 | hdmaprnlem1.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
16 | 1, 3, 8, 9, 13, 14, 2, 15, 5, 7 | hdmap10 41250 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐿‘{(𝑆‘𝑢)})) |
17 | hdmaprnlem1.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
18 | hdmaprnlem1.a | . . . . 5 ⊢ ✚ = (+g‘𝐶) | |
19 | hdmaprnlem1.q | . . . . 5 ⊢ 𝑄 = (0g‘𝐶) | |
20 | 1, 13, 5 | lcdlvec 41001 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LVec) |
21 | 1, 3, 8, 13, 17, 15, 5, 7 | hdmapcl 41240 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝑢) ∈ 𝐷) |
22 | hdmaprnlem1.se | . . . . 5 ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) | |
23 | hdmaprnlem1.ve | . . . . . 6 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
24 | hdmaprnlem1.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
25 | hdmaprnlem1.un | . . . . . 6 ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) | |
26 | 1, 3, 8, 9, 13, 14, 2, 15, 5, 22, 23, 24, 7, 25 | hdmaprnlem1N 41259 | . . . . 5 ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑢)}) ≠ (𝐿‘{𝑠})) |
27 | 17, 18, 19, 14, 20, 21, 22, 26 | lspindp3 21013 | . . . 4 ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑢)}) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
28 | 16, 27 | eqnetrd 3003 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑢})) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
29 | 1, 2, 3, 4, 5, 11 | mapdcl 41063 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑢})) ∈ ran 𝑀) |
30 | 1, 13, 5 | lcdlmod 41002 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ LMod) |
31 | 22 | eldifad 3956 | . . . . . . . 8 ⊢ (𝜑 → 𝑠 ∈ 𝐷) |
32 | 17, 18 | lmodvacl 20747 | . . . . . . . 8 ⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑢) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷) → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
33 | 30, 21, 31, 32 | syl3anc 1369 | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
34 | eqid 2727 | . . . . . . . 8 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
35 | 17, 34, 14 | lspsncl 20850 | . . . . . . 7 ⊢ ((𝐶 ∈ LMod ∧ ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
36 | 30, 33, 35 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
37 | 1, 2, 13, 34, 5 | mapdrn2 41061 | . . . . . 6 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
38 | 36, 37 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ ran 𝑀) |
39 | 1, 2, 5, 29, 38 | mapdcnv11N 41069 | . . . 4 ⊢ (𝜑 → ((◡𝑀‘(𝑀‘(𝑁‘{𝑢}))) = (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ↔ (𝑀‘(𝑁‘{𝑢})) = (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
40 | 39 | necon3bid 2980 | . . 3 ⊢ (𝜑 → ((◡𝑀‘(𝑀‘(𝑁‘{𝑢}))) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ↔ (𝑀‘(𝑁‘{𝑢})) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
41 | 28, 40 | mpbird 257 | . 2 ⊢ (𝜑 → (◡𝑀‘(𝑀‘(𝑁‘{𝑢}))) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
42 | 12, 41 | eqnetrrd 3004 | 1 ⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 ◡ccnv 5671 ran crn 5673 ‘cfv 6542 (class class class)co 7414 Basecbs 17171 +gcplusg 17224 0gc0g 17412 LModclmod 20732 LSubSpclss 20804 LSpanclspn 20844 HLchlt 38759 LHypclh 39394 DVecHcdvh 40488 LCDualclcd 40996 mapdcmpd 41034 HDMapchdma 41202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-riotaBAD 38362 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-0g 17414 df-mre 17557 df-mrc 17558 df-acs 17560 df-proset 18278 df-poset 18296 df-plt 18313 df-lub 18329 df-glb 18330 df-join 18331 df-meet 18332 df-p0 18408 df-p1 18409 df-lat 18415 df-clat 18482 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-grp 18884 df-minusg 18885 df-sbg 18886 df-subg 19069 df-cntz 19259 df-oppg 19288 df-lsm 19582 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-drng 20615 df-lmod 20734 df-lss 20805 df-lsp 20845 df-lvec 20977 df-lsatoms 38385 df-lshyp 38386 df-lcv 38428 df-lfl 38467 df-lkr 38495 df-ldual 38533 df-oposet 38585 df-ol 38587 df-oml 38588 df-covers 38675 df-ats 38676 df-atl 38707 df-cvlat 38731 df-hlat 38760 df-llines 38908 df-lplanes 38909 df-lvols 38910 df-lines 38911 df-psubsp 38913 df-pmap 38914 df-padd 39206 df-lhyp 39398 df-laut 39399 df-ldil 39514 df-ltrn 39515 df-trl 39569 df-tgrp 40153 df-tendo 40165 df-edring 40167 df-dveca 40413 df-disoa 40439 df-dvech 40489 df-dib 40549 df-dic 40583 df-dih 40639 df-doch 40758 df-djh 40805 df-lcdual 40997 df-mapd 41035 df-hvmap 41167 df-hdmap1 41203 df-hdmap 41204 |
This theorem is referenced by: hdmaprnlem3eN 41268 |
Copyright terms: Public domain | W3C validator |