![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinord | Structured version Visualization version GIF version |
Description: Sine is increasing over the closed interval from -(π / 2) to (π / 2). (Contributed by Mario Carneiro, 29-Jul-2014.) |
Ref | Expression |
---|---|
sinord | ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neghalfpire 26393 | . . . . 5 ⊢ -(π / 2) ∈ ℝ | |
2 | halfpire 26392 | . . . . 5 ⊢ (π / 2) ∈ ℝ | |
3 | iccssre 13432 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | . . . 4 ⊢ (-(π / 2)[,](π / 2)) ⊆ ℝ |
5 | 4 | sseli 3974 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 𝐴 ∈ ℝ) |
6 | 4 | sseli 3974 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → 𝐵 ∈ ℝ) |
7 | ltsub2 11735 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) | |
8 | 2, 7 | mp3an3 1447 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) |
9 | 5, 6, 8 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) |
10 | oveq2 7422 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((π / 2) − 𝑥) = ((π / 2) − 𝐵)) | |
11 | 10 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐵 → (((π / 2) − 𝑥) ∈ (0[,]π) ↔ ((π / 2) − 𝐵) ∈ (0[,]π))) |
12 | 4 | sseli 3974 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℝ) |
13 | resubcl 11548 | . . . . . 6 ⊢ (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((π / 2) − 𝑥) ∈ ℝ) | |
14 | 2, 12, 13 | sylancr 586 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ ℝ) |
15 | 1, 2 | elicc2i 13416 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↔ (𝑥 ∈ ℝ ∧ -(π / 2) ≤ 𝑥 ∧ 𝑥 ≤ (π / 2))) |
16 | 15 | simp3bi 1145 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ≤ (π / 2)) |
17 | subge0 11751 | . . . . . . 7 ⊢ (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2))) | |
18 | 2, 12, 17 | sylancr 586 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2))) |
19 | 16, 18 | mpbird 257 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ ((π / 2) − 𝑥)) |
20 | 15 | simp2bi 1144 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → -(π / 2) ≤ 𝑥) |
21 | lesub2 11733 | . . . . . . . . 9 ⊢ ((-(π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) | |
22 | 1, 2, 21 | mp3an13 1449 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) |
23 | 12, 22 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) |
24 | 20, 23 | mpbid 231 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2))) |
25 | 2 | recni 11252 | . . . . . . . 8 ⊢ (π / 2) ∈ ℂ |
26 | 25, 25 | subnegi 11563 | . . . . . . 7 ⊢ ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2)) |
27 | pidiv2halves 26395 | . . . . . . 7 ⊢ ((π / 2) + (π / 2)) = π | |
28 | 26, 27 | eqtri 2756 | . . . . . 6 ⊢ ((π / 2) − -(π / 2)) = π |
29 | 24, 28 | breqtrdi 5183 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ π) |
30 | 0re 11240 | . . . . . 6 ⊢ 0 ∈ ℝ | |
31 | pire 26386 | . . . . . 6 ⊢ π ∈ ℝ | |
32 | 30, 31 | elicc2i 13416 | . . . . 5 ⊢ (((π / 2) − 𝑥) ∈ (0[,]π) ↔ (((π / 2) − 𝑥) ∈ ℝ ∧ 0 ≤ ((π / 2) − 𝑥) ∧ ((π / 2) − 𝑥) ≤ π)) |
33 | 14, 19, 29, 32 | syl3anbrc 1341 | . . . 4 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ (0[,]π)) |
34 | 11, 33 | vtoclga 3562 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝐵) ∈ (0[,]π)) |
35 | oveq2 7422 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((π / 2) − 𝑥) = ((π / 2) − 𝐴)) | |
36 | 35 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → (((π / 2) − 𝑥) ∈ (0[,]π) ↔ ((π / 2) − 𝐴) ∈ (0[,]π))) |
37 | 36, 33 | vtoclga 3562 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝐴) ∈ (0[,]π)) |
38 | cosord 26458 | . . 3 ⊢ ((((π / 2) − 𝐵) ∈ (0[,]π) ∧ ((π / 2) − 𝐴) ∈ (0[,]π)) → (((π / 2) − 𝐵) < ((π / 2) − 𝐴) ↔ (cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)))) | |
39 | 34, 37, 38 | syl2anr 596 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (((π / 2) − 𝐵) < ((π / 2) − 𝐴) ↔ (cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)))) |
40 | 5 | recnd 11266 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 𝐴 ∈ ℂ) |
41 | coshalfpim 26423 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) | |
42 | 40, 41 | syl 17 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) |
43 | 6 | recnd 11266 | . . . 4 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → 𝐵 ∈ ℂ) |
44 | coshalfpim 26423 | . . . 4 ⊢ (𝐵 ∈ ℂ → (cos‘((π / 2) − 𝐵)) = (sin‘𝐵)) | |
45 | 43, 44 | syl 17 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝐵)) = (sin‘𝐵)) |
46 | 42, 45 | breqan12d 5158 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → ((cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)) ↔ (sin‘𝐴) < (sin‘𝐵))) |
47 | 9, 39, 46 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3945 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 ℝcr 11131 0cc0 11132 + caddc 11135 < clt 11272 ≤ cle 11273 − cmin 11468 -cneg 11469 / cdiv 11895 2c2 12291 [,]cicc 13353 sincsin 16033 cosccos 16034 πcpi 16036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ioo 13354 df-ioc 13355 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-seq 13993 df-exp 14053 df-fac 14259 df-bc 14288 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-ef 16037 df-sin 16039 df-cos 16040 df-pi 16042 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-lp 23033 df-perf 23034 df-cn 23124 df-cnp 23125 df-haus 23212 df-tx 23459 df-hmeo 23652 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-limc 25788 df-dv 25789 |
This theorem is referenced by: tanord1 26464 |
Copyright terms: Public domain | W3C validator |