![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringciso | Structured version Visualization version GIF version |
Description: An isomorphism in the category of unital rings is a bijection. (Contributed by AV, 14-Feb-2020.) |
Ref | Expression |
---|---|
ringcsect.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcsect.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringciso.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
ringciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2728 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | ringcsect.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | ringcsect.c | . . . . . 6 ⊢ 𝐶 = (RingCat‘𝑈) | |
5 | 4 | ringccat 20589 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | ringcsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | ringcsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | ringciso.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
10 | 1, 2, 6, 7, 8, 9 | isoval 17741 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
11 | 10 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
12 | 1, 2, 6, 7, 8 | invfun 17740 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌)) |
13 | funfvbrb 7054 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
15 | 4, 1, 3, 7, 8, 2 | ringcinv 20597 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹))) |
16 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹) → 𝐹 ∈ (𝑋 RingIso 𝑌)) | |
17 | 15, 16 | biimtrdi 252 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹 ∈ (𝑋 RingIso 𝑌))) |
18 | 14, 17 | sylbid 239 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹 ∈ (𝑋 RingIso 𝑌))) |
19 | eqid 2728 | . . . 4 ⊢ ◡𝐹 = ◡𝐹 | |
20 | 4, 1, 3, 7, 8, 2 | ringcinv 20597 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ◡𝐹 = ◡𝐹))) |
21 | funrel 6564 | . . . . . . 7 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌)) | |
22 | 12, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌)) |
23 | releldm 5940 | . . . . . . 7 ⊢ ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)) | |
24 | 23 | ex 412 | . . . . . 6 ⊢ (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
25 | 22, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
26 | 20, 25 | sylbird 260 | . . . 4 ⊢ (𝜑 → ((𝐹 ∈ (𝑋 RingIso 𝑌) ∧ ◡𝐹 = ◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
27 | 19, 26 | mpan2i 696 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑋 RingIso 𝑌) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
28 | 18, 27 | impbid 211 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
29 | 11, 28 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ◡ccnv 5671 dom cdm 5672 Rel wrel 5677 Fun wfun 6536 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 Catccat 17637 Invcinv 17721 Isociso 17722 RingIso crs 20402 RingCatcringc 20571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-hom 17250 df-cco 17251 df-0g 17416 df-cat 17641 df-cid 17642 df-homf 17643 df-sect 17723 df-inv 17724 df-iso 17725 df-ssc 17786 df-resc 17787 df-subc 17788 df-estrc 18106 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-grp 18886 df-ghm 19161 df-mgp 20068 df-ur 20115 df-ring 20168 df-rhm 20404 df-rim 20405 df-ringc 20572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |