MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cid Structured version   Visualization version   GIF version

Definition df-cid 17640
Description: Define the category identity arrow. Since it is uniquely defined when it exists, we do not need to add it to the data of the category, and instead extract it by uniqueness. (Contributed by Mario Carneiro, 3-Jan-2017.)
Assertion
Ref Expression
df-cid Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
Distinct variable group:   𝑏,𝑐,𝑓,𝑔,,𝑜,𝑥,𝑦

Detailed syntax breakdown of Definition df-cid
StepHypRef Expression
1 ccid 17636 . 2 class Id
2 vc . . 3 setvar 𝑐
3 ccat 17635 . . 3 class Cat
4 vb . . . 4 setvar 𝑏
52cv 1533 . . . . 5 class 𝑐
6 cbs 17171 . . . . 5 class Base
75, 6cfv 6542 . . . 4 class (Base‘𝑐)
8 vh . . . . 5 setvar
9 chom 17235 . . . . . 6 class Hom
105, 9cfv 6542 . . . . 5 class (Hom ‘𝑐)
11 vo . . . . . 6 setvar 𝑜
12 cco 17236 . . . . . . 7 class comp
135, 12cfv 6542 . . . . . 6 class (comp‘𝑐)
14 vx . . . . . . 7 setvar 𝑥
154cv 1533 . . . . . . 7 class 𝑏
16 vg . . . . . . . . . . . . . 14 setvar 𝑔
1716cv 1533 . . . . . . . . . . . . 13 class 𝑔
18 vf . . . . . . . . . . . . . 14 setvar 𝑓
1918cv 1533 . . . . . . . . . . . . 13 class 𝑓
20 vy . . . . . . . . . . . . . . . 16 setvar 𝑦
2120cv 1533 . . . . . . . . . . . . . . 15 class 𝑦
2214cv 1533 . . . . . . . . . . . . . . 15 class 𝑥
2321, 22cop 4630 . . . . . . . . . . . . . 14 class 𝑦, 𝑥
2411cv 1533 . . . . . . . . . . . . . 14 class 𝑜
2523, 22, 24co 7414 . . . . . . . . . . . . 13 class (⟨𝑦, 𝑥𝑜𝑥)
2617, 19, 25co 7414 . . . . . . . . . . . 12 class (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓)
2726, 19wceq 1534 . . . . . . . . . . 11 wff (𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓
288cv 1533 . . . . . . . . . . . 12 class
2921, 22, 28co 7414 . . . . . . . . . . 11 class (𝑦𝑥)
3027, 18, 29wral 3056 . . . . . . . . . 10 wff 𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓
3122, 22cop 4630 . . . . . . . . . . . . . 14 class 𝑥, 𝑥
3231, 21, 24co 7414 . . . . . . . . . . . . 13 class (⟨𝑥, 𝑥𝑜𝑦)
3319, 17, 32co 7414 . . . . . . . . . . . 12 class (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔)
3433, 19wceq 1534 . . . . . . . . . . 11 wff (𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓
3522, 21, 28co 7414 . . . . . . . . . . 11 class (𝑥𝑦)
3634, 18, 35wral 3056 . . . . . . . . . 10 wff 𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓
3730, 36wa 395 . . . . . . . . 9 wff (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
3837, 20, 15wral 3056 . . . . . . . 8 wff 𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)
3922, 22, 28co 7414 . . . . . . . 8 class (𝑥𝑥)
4038, 16, 39crio 7369 . . . . . . 7 class (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))
4114, 15, 40cmpt 5225 . . . . . 6 class (𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)))
4211, 13, 41csb 3889 . . . . 5 class (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)))
438, 10, 42csb 3889 . . . 4 class (Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)))
444, 7, 43csb 3889 . . 3 class (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓)))
452, 3, 44cmpt 5225 . 2 class (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
461, 45wceq 1534 1 wff Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
Colors of variables: wff setvar class
This definition is referenced by:  cidfval  17647  cidffn  17649
  Copyright terms: Public domain W3C validator