MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpan2i Structured version   Visualization version   GIF version

Theorem mpan2i 696
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpan2i.1 𝜒
mpan2i.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpan2i (𝜑 → (𝜓𝜃))

Proof of Theorem mpan2i
StepHypRef Expression
1 mpan2i.1 . . 3 𝜒
21a1i 11 . 2 (𝜑𝜒)
3 mpan2i.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpan2d 693 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  tcwf  9906  cflecard  10276  01sqrexlem7  15227  setciso  18079  lsmss1  19619  rngciso  20570  ringciso  20604  sincosq1lem  26431  pjcompi  31481  mdsl1i  32130  dfon2lem3  35381  dfon2lem7  35385  tan2h  37085  dvasin  37177  ismrc  42121  nnsum4primes4  47129  nnsum4primesprm  47131  nnsum4primesgbe  47133  nnsum4primesle9  47135  rngcisoALTV  47339  ringcisoALTV  47373  aacllem  48234
  Copyright terms: Public domain W3C validator