![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpan2i | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
mpan2i.1 | ⊢ 𝜒 |
mpan2i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2i | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2i.1 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpan2i.2 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
4 | 2, 3 | mpan2d 693 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: tcwf 9906 cflecard 10276 01sqrexlem7 15227 setciso 18079 lsmss1 19619 rngciso 20570 ringciso 20604 sincosq1lem 26431 pjcompi 31481 mdsl1i 32130 dfon2lem3 35381 dfon2lem7 35385 tan2h 37085 dvasin 37177 ismrc 42121 nnsum4primes4 47129 nnsum4primesprm 47131 nnsum4primesgbe 47133 nnsum4primesle9 47135 rngcisoALTV 47339 ringcisoALTV 47373 aacllem 48234 |
Copyright terms: Public domain | W3C validator |