![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringccat | Structured version Visualization version GIF version |
Description: The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
Ref | Expression |
---|---|
ringccat.c | ⊢ 𝐶 = (RingCat‘𝑈) |
Ref | Expression |
---|---|
ringccat | ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringccat.c | . . 3 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | id 22 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉) | |
3 | eqidd 2729 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring)) | |
4 | eqidd 2729 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
5 | 1, 2, 3, 4 | ringcval 20574 | . 2 ⊢ (𝑈 ∈ 𝑉 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))) |
6 | eqid 2728 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) | |
7 | eqid 2728 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
8 | eqidd 2729 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (Ring ∩ 𝑈) = (Ring ∩ 𝑈)) | |
9 | incom 4198 | . . . . . . 7 ⊢ (𝑈 ∩ Ring) = (Ring ∩ 𝑈) | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈)) |
11 | 10 | sqxpeqd 5705 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Ring ∩ 𝑈) × (Ring ∩ 𝑈))) |
12 | 11 | reseq2d 5980 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((Ring ∩ 𝑈) × (Ring ∩ 𝑈)))) |
13 | 7, 2, 8, 12 | rhmsubcsetc 20589 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
14 | 6, 13 | subccat 17828 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) ∈ Cat) |
15 | 5, 14 | eqeltrd 2829 | 1 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∩ cin 3944 × cxp 5671 ↾ cres 5675 ‘cfv 6543 (class class class)co 7415 Catccat 17638 ↾cat cresc 17785 ExtStrCatcestrc 18106 Ringcrg 20167 RingHom crh 20402 RingCatcringc 20572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-pm 8842 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-hom 17251 df-cco 17252 df-0g 17417 df-cat 17642 df-cid 17643 df-homf 17644 df-ssc 17787 df-resc 17788 df-subc 17789 df-estrc 18107 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-grp 18887 df-ghm 19162 df-mgp 20069 df-ur 20116 df-ring 20169 df-rhm 20405 df-ringc 20573 |
This theorem is referenced by: ringcsect 20597 ringcinv 20598 ringciso 20599 zrtermoringc 20602 zrninitoringc 20603 srhmsubc 20607 irinitoringc 21399 nzerooringczr 21400 funcringcsetcALTV2 47352 |
Copyright terms: Public domain | W3C validator |