![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringcval | Structured version Visualization version GIF version |
Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
ringcval.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
ringcval.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
ringcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcval.c | . 2 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | df-ringc 20573 | . . 3 ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | |
3 | fveq2 6892 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
5 | ineq1 4202 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring)) | |
6 | 5 | sqxpeqd 5705 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
7 | ringcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
8 | 7 | sqxpeqd 5705 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
9 | 8 | eqcomd 2734 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵)) |
10 | 6, 9 | sylan9eqr 2790 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵)) |
11 | 10 | reseq2d 5980 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵))) |
12 | ringcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
13 | 12 | eqcomd 2734 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
15 | 11, 14 | eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻) |
16 | 4, 15 | oveq12d 7433 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
17 | ringcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
18 | 17 | elexd 3491 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
19 | ovexd 7450 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
20 | 2, 16, 18, 19 | fvmptd2 7008 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
21 | 1, 20 | eqtrid 2780 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ∩ cin 3944 × cxp 5671 ↾ cres 5675 ‘cfv 6543 (class class class)co 7415 ↾cat cresc 17785 ExtStrCatcestrc 18106 Ringcrg 20167 RingHom crh 20402 RingCatcringc 20572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-res 5685 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7418 df-ringc 20573 |
This theorem is referenced by: ringcbas 20577 ringchomfval 20578 ringccofval 20582 dfringc2 20584 ringccat 20590 ringcid 20591 funcringcsetc 20601 |
Copyright terms: Public domain | W3C validator |