MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfringc2 Structured version   Visualization version   GIF version

Theorem dfringc2 20583
Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
dfringc2.c 𝐶 = (RingCat‘𝑈)
dfringc2.u (𝜑𝑈𝑉)
dfringc2.b (𝜑𝐵 = (𝑈 ∩ Ring))
dfringc2.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
dfringc2.o (𝜑· = (comp‘(ExtStrCat‘𝑈)))
Assertion
Ref Expression
dfringc2 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem dfringc2
Dummy variables 𝑓 𝑔 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfringc2.c . . 3 𝐶 = (RingCat‘𝑈)
2 dfringc2.u . . 3 (𝜑𝑈𝑉)
3 dfringc2.b . . 3 (𝜑𝐵 = (𝑈 ∩ Ring))
4 dfringc2.h . . 3 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
51, 2, 3, 4ringcval 20573 . 2 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
6 eqid 2727 . . 3 ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻)
7 fvexd 6906 . . 3 (𝜑 → (ExtStrCat‘𝑈) ∈ V)
8 inex1g 5313 . . . . 5 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
92, 8syl 17 . . . 4 (𝜑 → (𝑈 ∩ Ring) ∈ V)
103, 9eqeltrd 2828 . . 3 (𝜑𝐵 ∈ V)
113, 4rhmresfn 20574 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
126, 7, 10, 11rescval2 17804 . 2 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩))
13 eqid 2727 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
14 eqidd 2728 . . . 4 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
15 dfringc2.o . . . . 5 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
16 eqid 2727 . . . . . 6 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
1713, 2, 16estrccofval 18112 . . . . 5 (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1815, 17eqtrd 2767 . . . 4 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1913, 2, 14, 18estrcval 18107 . . 3 (𝜑 → (ExtStrCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), · ⟩})
20 mpoexga 8076 . . . 4 ((𝑈𝑉𝑈𝑉) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
212, 2, 20syl2anc 583 . . 3 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
22 fvexd 6906 . . . 4 (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V)
2315, 22eqeltrd 2828 . . 3 (𝜑· ∈ V)
24 rhmfn 20431 . . . . . 6 RingHom Fn (Ring × Ring)
25 fnfun 6648 . . . . . 6 ( RingHom Fn (Ring × Ring) → Fun RingHom )
2624, 25mp1i 13 . . . . 5 (𝜑 → Fun RingHom )
27 sqxpexg 7751 . . . . . 6 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
2810, 27syl 17 . . . . 5 (𝜑 → (𝐵 × 𝐵) ∈ V)
29 resfunexg 7221 . . . . 5 ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3026, 28, 29syl2anc 583 . . . 4 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
314, 30eqeltrd 2828 . . 3 (𝜑𝐻 ∈ V)
32 inss1 4224 . . . 4 (𝑈 ∩ Ring) ⊆ 𝑈
333, 32eqsstrdi 4032 . . 3 (𝜑𝐵𝑈)
3419, 2, 21, 23, 31, 33estrres 18123 . 2 (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
355, 12, 343eqtrd 2771 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469  cin 3943  {ctp 4628  cop 4630   × cxp 5670  cres 5674  ccom 5676  Fun wfun 6536   Fn wfn 6537  cfv 6542  (class class class)co 7414  cmpo 7416  1st c1st 7985  2nd c2nd 7986  m cmap 8838   sSet csts 17125  ndxcnx 17155  Basecbs 17173  s cress 17202  Hom chom 17237  compcco 17238  cat cresc 17784  ExtStrCatcestrc 18105  Ringcrg 20166   RingHom crh 20401  RingCatcringc 20571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-hom 17250  df-cco 17251  df-0g 17416  df-resc 17787  df-estrc 18106  df-mhm 18733  df-ghm 19161  df-mgp 20068  df-ur 20115  df-ring 20168  df-rhm 20404  df-ringc 20572
This theorem is referenced by:  rngcresringcat  20595
  Copyright terms: Public domain W3C validator