MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcresringcat Structured version   Visualization version   GIF version

Theorem rngcresringcat 20595
Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcrngc.c 𝐶 = (RngCat‘𝑈)
rhmsubcrngc.u (𝜑𝑈𝑉)
rhmsubcrngc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcrngc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rngcresringcat (𝜑 → (𝐶cat 𝐻) = (RingCat‘𝑈))

Proof of Theorem rngcresringcat
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rhmsubcrngc.c . . . 4 𝐶 = (RngCat‘𝑈)
2 rhmsubcrngc.u . . . 4 (𝜑𝑈𝑉)
3 eqidd 2728 . . . 4 (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng))
4 eqidd 2728 . . . 4 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
5 eqidd 2728 . . . 4 (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)))
61, 2, 3, 4, 5dfrngc2 20554 . . 3 (𝜑𝐶 = {⟨(Base‘ndx), (𝑈 ∩ Rng)⟩, ⟨(Hom ‘ndx), ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
7 inex1g 5313 . . . 4 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
82, 7syl 17 . . 3 (𝜑 → (𝑈 ∩ Rng) ∈ V)
9 rnghmfn 20371 . . . . 5 RngHom Fn (Rng × Rng)
10 fnfun 6648 . . . . 5 ( RngHom Fn (Rng × Rng) → Fun RngHom )
119, 10mp1i 13 . . . 4 (𝜑 → Fun RngHom )
12 sqxpexg 7751 . . . . 5 ((𝑈 ∩ Rng) ∈ V → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V)
138, 12syl 17 . . . 4 (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V)
14 resfunexg 7221 . . . 4 ((Fun RngHom ∧ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V)
1511, 13, 14syl2anc 583 . . 3 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V)
16 fvexd 6906 . . 3 (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V)
17 rhmsubcrngc.h . . . 4 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
18 rhmfn 20431 . . . . . 6 RingHom Fn (Ring × Ring)
19 fnfun 6648 . . . . . 6 ( RingHom Fn (Ring × Ring) → Fun RingHom )
2018, 19mp1i 13 . . . . 5 (𝜑 → Fun RingHom )
21 rhmsubcrngc.b . . . . . . . 8 (𝜑𝐵 = (Ring ∩ 𝑈))
22 incom 4197 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
2321, 22eqtrdi 2783 . . . . . . 7 (𝜑𝐵 = (𝑈 ∩ Ring))
24 inex1g 5313 . . . . . . . 8 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
252, 24syl 17 . . . . . . 7 (𝜑 → (𝑈 ∩ Ring) ∈ V)
2623, 25eqeltrd 2828 . . . . . 6 (𝜑𝐵 ∈ V)
27 sqxpexg 7751 . . . . . 6 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
2826, 27syl 17 . . . . 5 (𝜑 → (𝐵 × 𝐵) ∈ V)
29 resfunexg 7221 . . . . 5 ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3020, 28, 29syl2anc 583 . . . 4 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3117, 30eqeltrd 2828 . . 3 (𝜑𝐻 ∈ V)
32 ringrng 20214 . . . . . . 7 (𝑟 ∈ Ring → 𝑟 ∈ Rng)
3332a1i 11 . . . . . 6 (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng))
3433ssrdv 3984 . . . . 5 (𝜑 → Ring ⊆ Rng)
3534ssrind 4231 . . . 4 (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈))
36 incom 4197 . . . . 5 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
3736a1i 11 . . . 4 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
3835, 21, 373sstr4d 4025 . . 3 (𝜑𝐵 ⊆ (𝑈 ∩ Rng))
396, 8, 15, 16, 31, 38estrres 18123 . 2 (𝜑 → ((𝐶s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
40 eqid 2727 . . 3 (𝐶cat 𝐻) = (𝐶cat 𝐻)
41 fvexd 6906 . . . 4 (𝜑 → (RngCat‘𝑈) ∈ V)
421, 41eqeltrid 2832 . . 3 (𝜑𝐶 ∈ V)
4323, 17rhmresfn 20574 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
4440, 42, 26, 43rescval2 17804 . 2 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩))
45 eqid 2727 . . 3 (RingCat‘𝑈) = (RingCat‘𝑈)
4645, 2, 23, 17, 5dfringc2 20583 . 2 (𝜑 → (RingCat‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
4739, 44, 463eqtr4d 2777 1 (𝜑 → (𝐶cat 𝐻) = (RingCat‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469  cin 3943  {ctp 4628  cop 4630   × cxp 5670  cres 5674  Fun wfun 6536   Fn wfn 6537  cfv 6542  (class class class)co 7414   sSet csts 17125  ndxcnx 17155  Basecbs 17173  s cress 17202  Hom chom 17237  compcco 17238  cat cresc 17784  ExtStrCatcestrc 18105  Rngcrng 20085  Ringcrg 20166   RngHom crnghm 20366   RingHom crh 20401  RngCatcrngc 20542  RingCatcringc 20571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-hom 17250  df-cco 17251  df-0g 17416  df-resc 17787  df-estrc 18106  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-grp 18886  df-minusg 18887  df-ghm 19161  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-rnghm 20368  df-rhm 20404  df-rngc 20543  df-ringc 20572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator