![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngcresringcat | Structured version Visualization version GIF version |
Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
rhmsubcrngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rhmsubcrngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rhmsubcrngc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
rhmsubcrngc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rngcresringcat | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcrngc.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | rhmsubcrngc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | eqidd 2728 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
4 | eqidd 2728 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
5 | eqidd 2728 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))) | |
6 | 1, 2, 3, 4, 5 | dfrngc2 20554 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
7 | inex1g 5313 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
9 | rnghmfn 20371 | . . . . 5 ⊢ RngHom Fn (Rng × Rng) | |
10 | fnfun 6648 | . . . . 5 ⊢ ( RngHom Fn (Rng × Rng) → Fun RngHom ) | |
11 | 9, 10 | mp1i 13 | . . . 4 ⊢ (𝜑 → Fun RngHom ) |
12 | sqxpexg 7751 | . . . . 5 ⊢ ((𝑈 ∩ Rng) ∈ V → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) | |
13 | 8, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) |
14 | resfunexg 7221 | . . . 4 ⊢ ((Fun RngHom ∧ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) | |
15 | 11, 13, 14 | syl2anc 583 | . . 3 ⊢ (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) |
16 | fvexd 6906 | . . 3 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
17 | rhmsubcrngc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
18 | rhmfn 20431 | . . . . . 6 ⊢ RingHom Fn (Ring × Ring) | |
19 | fnfun 6648 | . . . . . 6 ⊢ ( RingHom Fn (Ring × Ring) → Fun RingHom ) | |
20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RingHom ) |
21 | rhmsubcrngc.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
22 | incom 4197 | . . . . . . . 8 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
23 | 21, 22 | eqtrdi 2783 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
24 | inex1g 5313 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
25 | 2, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
26 | 23, 25 | eqeltrd 2828 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
27 | sqxpexg 7751 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
28 | 26, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
29 | resfunexg 7221 | . . . . 5 ⊢ ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) | |
30 | 20, 28, 29 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) |
31 | 17, 30 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
32 | ringrng 20214 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → 𝑟 ∈ Rng) | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng)) |
34 | 33 | ssrdv 3984 | . . . . 5 ⊢ (𝜑 → Ring ⊆ Rng) |
35 | 34 | ssrind 4231 | . . . 4 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈)) |
36 | incom 4197 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
38 | 35, 21, 37 | 3sstr4d 4025 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (𝑈 ∩ Rng)) |
39 | 6, 8, 15, 16, 31, 38 | estrres 18123 | . 2 ⊢ (𝜑 → ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
40 | eqid 2727 | . . 3 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
41 | fvexd 6906 | . . . 4 ⊢ (𝜑 → (RngCat‘𝑈) ∈ V) | |
42 | 1, 41 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
43 | 23, 17 | rhmresfn 20574 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
44 | 40, 42, 26, 43 | rescval2 17804 | . 2 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
45 | eqid 2727 | . . 3 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
46 | 45, 2, 23, 17, 5 | dfringc2 20583 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
47 | 39, 44, 46 | 3eqtr4d 2777 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∩ cin 3943 {ctp 4628 〈cop 4630 × cxp 5670 ↾ cres 5674 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 (class class class)co 7414 sSet csts 17125 ndxcnx 17155 Basecbs 17173 ↾s cress 17202 Hom chom 17237 compcco 17238 ↾cat cresc 17784 ExtStrCatcestrc 18105 Rngcrng 20085 Ringcrg 20166 RngHom crnghm 20366 RingHom crh 20401 RngCatcrngc 20542 RingCatcringc 20571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-hom 17250 df-cco 17251 df-0g 17416 df-resc 17787 df-estrc 18106 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-grp 18886 df-minusg 18887 df-ghm 19161 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-rnghm 20368 df-rhm 20404 df-rngc 20543 df-ringc 20572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |