MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgninv Structured version   Visualization version   GIF version

Theorem psgninv 21514
Description: The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
psgninv.s 𝑆 = (SymGrp‘𝐷)
psgninv.n 𝑁 = (pmSgn‘𝐷)
psgninv.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
psgninv ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))

Proof of Theorem psgninv
StepHypRef Expression
1 psgninv.s . . . . 5 𝑆 = (SymGrp‘𝐷)
2 psgninv.n . . . . 5 𝑁 = (pmSgn‘𝐷)
3 eqid 2728 . . . . 5 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
41, 2, 3psgnghm2 21513 . . . 4 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
5 psgninv.p . . . . 5 𝑃 = (Base‘𝑆)
6 eqid 2728 . . . . 5 (invg𝑆) = (invg𝑆)
7 eqid 2728 . . . . 5 (invg‘((mulGrp‘ℂfld) ↾s {1, -1})) = (invg‘((mulGrp‘ℂfld) ↾s {1, -1}))
85, 6, 7ghminv 19177 . . . 4 ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
94, 8sylan 579 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
101, 5, 6symginv 19357 . . . . 5 (𝐹𝑃 → ((invg𝑆)‘𝐹) = 𝐹)
1110adantl 481 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invg𝑆)‘𝐹) = 𝐹)
1211fveq2d 6901 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁‘((invg𝑆)‘𝐹)) = (𝑁𝐹))
13 eqid 2728 . . . . . 6 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1413cnmsgnsubg 21509 . . . . 5 {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
153cnmsgnbas 21510 . . . . . . . 8 {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
165, 15ghmf 19174 . . . . . . 7 (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1})
174, 16syl 17 . . . . . 6 (𝐷 ∈ Fin → 𝑁:𝑃⟶{1, -1})
1817ffvelcdmda 7094 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) ∈ {1, -1})
19 cnex 11220 . . . . . . . . 9 ℂ ∈ V
2019difexi 5330 . . . . . . . 8 (ℂ ∖ {0}) ∈ V
21 ax-1cn 11197 . . . . . . . . . 10 1 ∈ ℂ
22 ax-1ne0 11208 . . . . . . . . . 10 1 ≠ 0
23 eldifsn 4791 . . . . . . . . . 10 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
2421, 22, 23mpbir2an 710 . . . . . . . . 9 1 ∈ (ℂ ∖ {0})
25 neg1cn 12357 . . . . . . . . . 10 -1 ∈ ℂ
26 neg1ne0 12359 . . . . . . . . . 10 -1 ≠ 0
27 eldifsn 4791 . . . . . . . . . 10 (-1 ∈ (ℂ ∖ {0}) ↔ (-1 ∈ ℂ ∧ -1 ≠ 0))
2825, 26, 27mpbir2an 710 . . . . . . . . 9 -1 ∈ (ℂ ∖ {0})
29 prssi 4825 . . . . . . . . 9 ((1 ∈ (ℂ ∖ {0}) ∧ -1 ∈ (ℂ ∖ {0})) → {1, -1} ⊆ (ℂ ∖ {0}))
3024, 28, 29mp2an 691 . . . . . . . 8 {1, -1} ⊆ (ℂ ∖ {0})
31 ressabs 17230 . . . . . . . 8 (((ℂ ∖ {0}) ∈ V ∧ {1, -1} ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}))
3220, 30, 31mp2an 691 . . . . . . 7 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
3332eqcomi 2737 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1})
34 cnfldbas 21283 . . . . . . . 8 ℂ = (Base‘ℂfld)
35 cnfld0 21320 . . . . . . . 8 0 = (0g‘ℂfld)
36 cndrng 21326 . . . . . . . 8 fld ∈ DivRing
3734, 35, 36drngui 20630 . . . . . . 7 (ℂ ∖ {0}) = (Unit‘ℂfld)
38 eqid 2728 . . . . . . 7 (invr‘ℂfld) = (invr‘ℂfld)
3937, 13, 38invrfval 20328 . . . . . 6 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
4033, 39, 7subginv 19088 . . . . 5 (({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (𝑁𝐹) ∈ {1, -1}) → ((invr‘ℂfld)‘(𝑁𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
4114, 18, 40sylancr 586 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invr‘ℂfld)‘(𝑁𝐹)) = ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)))
4230, 18sselid 3978 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) ∈ (ℂ ∖ {0}))
43 eldifsn 4791 . . . . . 6 ((𝑁𝐹) ∈ (ℂ ∖ {0}) ↔ ((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0))
4442, 43sylib 217 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0))
45 cnfldinv 21330 . . . . 5 (((𝑁𝐹) ∈ ℂ ∧ (𝑁𝐹) ≠ 0) → ((invr‘ℂfld)‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
4644, 45syl 17 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invr‘ℂfld)‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
4741, 46eqtr3d 2770 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((invg‘((mulGrp‘ℂfld) ↾s {1, -1}))‘(𝑁𝐹)) = (1 / (𝑁𝐹)))
489, 12, 473eqtr3d 2776 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (1 / (𝑁𝐹)))
49 fvex 6910 . . . . 5 (𝑁𝐹) ∈ V
5049elpr 4652 . . . 4 ((𝑁𝐹) ∈ {1, -1} ↔ ((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1))
51 1div1e1 11935 . . . . . 6 (1 / 1) = 1
52 oveq2 7428 . . . . . 6 ((𝑁𝐹) = 1 → (1 / (𝑁𝐹)) = (1 / 1))
53 id 22 . . . . . 6 ((𝑁𝐹) = 1 → (𝑁𝐹) = 1)
5451, 52, 533eqtr4a 2794 . . . . 5 ((𝑁𝐹) = 1 → (1 / (𝑁𝐹)) = (𝑁𝐹))
55 divneg2 11969 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
5621, 21, 22, 55mp3an 1458 . . . . . . 7 -(1 / 1) = (1 / -1)
5751negeqi 11484 . . . . . . 7 -(1 / 1) = -1
5856, 57eqtr3i 2758 . . . . . 6 (1 / -1) = -1
59 oveq2 7428 . . . . . 6 ((𝑁𝐹) = -1 → (1 / (𝑁𝐹)) = (1 / -1))
60 id 22 . . . . . 6 ((𝑁𝐹) = -1 → (𝑁𝐹) = -1)
6158, 59, 603eqtr4a 2794 . . . . 5 ((𝑁𝐹) = -1 → (1 / (𝑁𝐹)) = (𝑁𝐹))
6254, 61jaoi 856 . . . 4 (((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1) → (1 / (𝑁𝐹)) = (𝑁𝐹))
6350, 62sylbi 216 . . 3 ((𝑁𝐹) ∈ {1, -1} → (1 / (𝑁𝐹)) = (𝑁𝐹))
6418, 63syl 17 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (1 / (𝑁𝐹)) = (𝑁𝐹))
6548, 64eqtrd 2768 1 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2937  Vcvv 3471  cdif 3944  wss 3947  {csn 4629  {cpr 4631  ccnv 5677  wf 6544  cfv 6548  (class class class)co 7420  Fincfn 8964  cc 11137  0cc0 11139  1c1 11140  -cneg 11476   / cdiv 11902  Basecbs 17180  s cress 17209  invgcminusg 18891  SubGrpcsubg 19075   GrpHom cghm 19167  SymGrpcsymg 19321  pmSgncpsgn 19444  mulGrpcmgp 20074  invrcinvr 20326  fldccnfld 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-addf 11218  ax-mulf 11219
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-xnn0 12576  df-z 12590  df-dec 12709  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-seq 14000  df-exp 14060  df-hash 14323  df-word 14498  df-lsw 14546  df-concat 14554  df-s1 14579  df-substr 14624  df-pfx 14654  df-splice 14733  df-reverse 14742  df-s2 14832  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-0g 17423  df-gsum 17424  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-submnd 18741  df-efmnd 18821  df-grp 18893  df-minusg 18894  df-subg 19078  df-ghm 19168  df-gim 19213  df-oppg 19297  df-symg 19322  df-pmtr 19397  df-psgn 19446  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-cring 20176  df-oppr 20273  df-dvdsr 20296  df-unit 20297  df-invr 20327  df-dvr 20340  df-drng 20626  df-cnfld 21280
This theorem is referenced by:  zrhpsgninv  21517  evpmodpmf1o  21528  madjusmdetlem4  33431
  Copyright terms: Public domain W3C validator