![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfld0 | Structured version Visualization version GIF version |
Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cnfld0 | ⊢ 0 = (0g‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 00id 11413 | . . 3 ⊢ (0 + 0) = 0 | |
2 | cnring 21311 | . . . . 5 ⊢ ℂfld ∈ Ring | |
3 | ringgrp 20171 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
5 | 0cn 11230 | . . . 4 ⊢ 0 ∈ ℂ | |
6 | cnfldbas 21276 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
7 | cnfldadd 21278 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
8 | eqid 2728 | . . . . 5 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
9 | 6, 7, 8 | grpid 18925 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 0 ∈ ℂ) → ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0)) |
10 | 4, 5, 9 | mp2an 691 | . . 3 ⊢ ((0 + 0) = 0 ↔ (0g‘ℂfld) = 0) |
11 | 1, 10 | mpbi 229 | . 2 ⊢ (0g‘ℂfld) = 0 |
12 | 11 | eqcomi 2737 | 1 ⊢ 0 = (0g‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 0cc0 11132 + caddc 11135 0gc0g 17414 Grpcgrp 18883 Ringcrg 20166 ℂfldccnfld 21272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-cmn 19730 df-mgp 20068 df-ring 20168 df-cring 20169 df-cnfld 21273 |
This theorem is referenced by: cnfldneg 21316 cndrng 21319 cndrngOLD 21320 cnflddiv 21321 cnflddivOLD 21322 cnfldinv 21323 cnfldmulg 21324 cnsubmlem 21340 cnsubdrglem 21344 absabv 21350 qsssubdrg 21352 cnmgpabl 21354 cnmsubglem 21356 gzrngunitlem 21358 gzrngunit 21359 gsumfsum 21360 expmhm 21362 nn0srg 21363 rge0srg 21364 zring0 21377 zringunit 21385 expghm 21394 psgninv 21507 zrhpsgnmhm 21509 re0g 21537 regsumsupp 21547 mhpsclcl 22064 mhpvarcl 22065 mhpmulcl 22066 cnfldnm 24688 clm0 24992 cphsubrglem 25098 cphreccllem 25099 tdeglem1 25984 tdeglem1OLD 25985 tdeglem3 25986 tdeglem3OLD 25987 tdeglem4 25988 tdeglem4OLD 25989 plypf1 26139 dvply2g 26212 dvply2gOLD 26213 tayl0 26289 taylpfval 26292 efsubm 26478 jensenlem2 26913 jensen 26914 amgmlem 26915 amgm 26916 dchrghm 27182 dchrabs 27186 sum2dchr 27200 lgseisenlem4 27304 qrng0 27547 1fldgenq 33003 xrge0slmod 33054 ccfldextdgrr 33350 zringnm 33553 rezh 33566 mhphflem 41823 fsumcnsrcl 42584 cnsrplycl 42585 rngunsnply 42591 proot1ex 42618 deg1mhm 42622 2zrng0 47300 amgmwlem 48229 amgmlemALT 48230 |
Copyright terms: Public domain | W3C validator |