MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cndrngOLD Structured version   Visualization version   GIF version

Theorem cndrngOLD 21320
Description: Obsolete version of cndrng 21319 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cndrngOLD fld ∈ DivRing

Proof of Theorem cndrngOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 21276 . . . 4 ℂ = (Base‘ℂfld)
21a1i 11 . . 3 (⊤ → ℂ = (Base‘ℂfld))
3 cnfldmul 21280 . . . 4 · = (.r‘ℂfld)
43a1i 11 . . 3 (⊤ → · = (.r‘ℂfld))
5 cnfld0 21313 . . . 4 0 = (0g‘ℂfld)
65a1i 11 . . 3 (⊤ → 0 = (0g‘ℂfld))
7 cnfld1 21314 . . . 4 1 = (1r‘ℂfld)
87a1i 11 . . 3 (⊤ → 1 = (1r‘ℂfld))
9 cnring 21311 . . . 4 fld ∈ Ring
109a1i 11 . . 3 (⊤ → ℂfld ∈ Ring)
11 mulne0 11880 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
12113adant1 1128 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
13 ax-1ne0 11201 . . . 4 1 ≠ 0
1413a1i 11 . . 3 (⊤ → 1 ≠ 0)
15 reccl 11903 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
1615adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
17 recid2 11911 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) · 𝑥) = 1)
1817adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · 𝑥) = 1)
192, 4, 6, 8, 10, 12, 14, 16, 18isdrngd 20650 . 2 (⊤ → ℂfld ∈ DivRing)
2019mptru 1541 1 fld ∈ DivRing
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wtru 1535  wcel 2099  wne 2936  cfv 6542  (class class class)co 7414  cc 11130  0cc0 11132  1c1 11133   · cmul 11137   / cdiv 11895  Basecbs 17173  .rcmulr 17227  0gc0g 17414  1rcur 20114  Ringcrg 20166  DivRingcdr 20617  fldccnfld 21272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-addf 11211  ax-mulf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-cring 20169  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-cnfld 21273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator