![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrghm | Structured version Visualization version GIF version |
Description: A Dirichlet character restricted to the unit group of ℤ/nℤ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
dchrghm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrghm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrghm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrghm.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrghm.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
dchrghm.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
dchrghm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
dchrghm | ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrghm.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrghm.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrghm.b | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
4 | 1, 2, 3 | dchrmhm 27167 | . . . . 5 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
5 | dchrghm.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | 4, 5 | sselid 3976 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
7 | 1, 3 | dchrrcl 27166 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
9 | 8 | nnnn0d 12556 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
10 | 2 | zncrng 21471 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
12 | crngring 20178 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
14 | dchrghm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑍) | |
15 | eqid 2728 | . . . . . 6 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
16 | 14, 15 | unitsubm 20318 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
17 | 13, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
18 | dchrghm.h | . . . . 5 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
19 | 18 | resmhm 18765 | . . . 4 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
20 | 6, 17, 19 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
21 | cnring 21311 | . . . . 5 ⊢ ℂfld ∈ Ring | |
22 | cnfldbas 21276 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
23 | cnfld0 21313 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
24 | cndrng 21319 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
25 | 22, 23, 24 | drngui 20623 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
26 | eqid 2728 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
27 | 25, 26 | unitsubm 20318 | . . . . 5 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
28 | 21, 27 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) |
29 | df-ima 5685 | . . . . 5 ⊢ (𝑋 “ 𝑈) = ran (𝑋 ↾ 𝑈) | |
30 | eqid 2728 | . . . . . . . . . 10 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
31 | 1, 2, 3, 30, 5 | dchrf 27168 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
32 | 30, 14 | unitss 20308 | . . . . . . . . . 10 ⊢ 𝑈 ⊆ (Base‘𝑍) |
33 | 32 | sseli 3974 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑍)) |
34 | ffvelcdm 7085 | . . . . . . . . 9 ⊢ ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋‘𝑥) ∈ ℂ) | |
35 | 31, 33, 34 | syl2an 595 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ ℂ) |
36 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
37 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑋 ∈ 𝐷) |
38 | 33 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑍)) |
39 | 1, 2, 3, 30, 14, 37, 38 | dchrn0 27176 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ((𝑋‘𝑥) ≠ 0 ↔ 𝑥 ∈ 𝑈)) |
40 | 36, 39 | mpbird 257 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ≠ 0) |
41 | eldifsn 4786 | . . . . . . . 8 ⊢ ((𝑋‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋‘𝑥) ∈ ℂ ∧ (𝑋‘𝑥) ≠ 0)) | |
42 | 35, 40, 41 | sylanbrc 582 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
43 | 42 | ralrimiva 3142 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
44 | 31 | ffund 6720 | . . . . . . 7 ⊢ (𝜑 → Fun 𝑋) |
45 | 31 | fdmd 6727 | . . . . . . . 8 ⊢ (𝜑 → dom 𝑋 = (Base‘𝑍)) |
46 | 32, 45 | sseqtrrid 4031 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ dom 𝑋) |
47 | funimass4 6957 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑈 ⊆ dom 𝑋) → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) | |
48 | 44, 46, 47 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) |
49 | 43, 48 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝑋 “ 𝑈) ⊆ (ℂ ∖ {0})) |
50 | 29, 49 | eqsstrrid 4027 | . . . 4 ⊢ (𝜑 → ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) |
51 | dchrghm.m | . . . . 5 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
52 | 51 | resmhm2b 18767 | . . . 4 ⊢ (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
53 | 28, 50, 52 | sylancr 586 | . . 3 ⊢ (𝜑 → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
54 | 20, 53 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀)) |
55 | 14, 18 | unitgrp 20315 | . . . 4 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
56 | 13, 55 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Grp) |
57 | 51 | cnmgpabl 21354 | . . . 4 ⊢ 𝑀 ∈ Abel |
58 | ablgrp 19733 | . . . 4 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
59 | 57, 58 | ax-mp 5 | . . 3 ⊢ 𝑀 ∈ Grp |
60 | ghmmhmb 19174 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) | |
61 | 56, 59, 60 | sylancl 585 | . 2 ⊢ (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) |
62 | 54, 61 | eleqtrrd 2832 | 1 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 ∖ cdif 3942 ⊆ wss 3945 {csn 4624 dom cdm 5672 ran crn 5673 ↾ cres 5674 “ cima 5675 Fun wfun 6536 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 0cc0 11132 ℕcn 12236 ℕ0cn0 12496 Basecbs 17173 ↾s cress 17202 MndHom cmhm 18731 SubMndcsubmnd 18732 Grpcgrp 18883 GrpHom cghm 19160 Abelcabl 19729 mulGrpcmgp 20067 Ringcrg 20166 CRingccrg 20167 Unitcui 20287 ℂfldccnfld 21272 ℤ/nℤczn 21421 DChrcdchr 27158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-addf 11211 ax-mulf 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17416 df-imas 17483 df-qus 17484 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-subg 19071 df-nsg 19072 df-eqg 19073 df-ghm 19161 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-cring 20169 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-dvr 20333 df-subrng 20476 df-subrg 20501 df-drng 20619 df-lmod 20738 df-lss 20809 df-lsp 20849 df-sra 21051 df-rgmod 21052 df-lidl 21097 df-rsp 21098 df-2idl 21137 df-cnfld 21273 df-zring 21366 df-zn 21425 df-dchr 27159 |
This theorem is referenced by: dchrabs 27186 sum2dchr 27200 |
Copyright terms: Public domain | W3C validator |