MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lidl Structured version   Visualization version   GIF version

Definition df-lidl 21093
Description: Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. For the usual textbook definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring, see dflidl2rng 21103 and dflidl2 21112. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
df-lidl LIdeal = (LSubSp ∘ ringLMod)

Detailed syntax breakdown of Definition df-lidl
StepHypRef Expression
1 clidl 21091 . 2 class LIdeal
2 clss 20804 . . 3 class LSubSp
3 crglmod 21046 . . 3 class ringLMod
42, 3ccom 5676 . 2 class (LSubSp ∘ ringLMod)
51, 4wceq 1534 1 wff LIdeal = (LSubSp ∘ ringLMod)
Colors of variables: wff setvar class
This definition is referenced by:  lidlval  21095
  Copyright terms: Public domain W3C validator