![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version |
Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
Ref | Expression |
---|---|
invrfval.u | ⊢ 𝑈 = (Unit‘𝑅) |
invrfval.g | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
invrfval.i | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
invrfval | ⊢ 𝐼 = (invg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invrfval.i | . 2 ⊢ 𝐼 = (invr‘𝑅) | |
2 | fveq2 6897 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
3 | fveq2 6897 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
4 | invrfval.u | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
5 | 3, 4 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
6 | 2, 5 | oveq12d 7438 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈)) |
7 | invrfval.g | . . . . . 6 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
8 | 6, 7 | eqtr4di 2786 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺) |
9 | 8 | fveq2d 6901 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘𝐺)) |
10 | df-invr 20327 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
11 | fvex 6910 | . . . 4 ⊢ (invg‘𝐺) ∈ V | |
12 | 9, 10, 11 | fvmpt 7005 | . . 3 ⊢ (𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
13 | fvprc 6889 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = ∅) | |
14 | base0 17185 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
15 | eqid 2728 | . . . . . . 7 ⊢ (invg‘∅) = (invg‘∅) | |
16 | 14, 15 | grpinvfn 18938 | . . . . . 6 ⊢ (invg‘∅) Fn ∅ |
17 | fn0 6686 | . . . . . 6 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
18 | 16, 17 | mpbi 229 | . . . . 5 ⊢ (invg‘∅) = ∅ |
19 | 13, 18 | eqtr4di 2786 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘∅)) |
20 | fvprc 6889 | . . . . . . . 8 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
21 | 20 | oveq1d 7435 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈)) |
22 | 7, 21 | eqtrid 2780 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈)) |
23 | ress0 17224 | . . . . . 6 ⊢ (∅ ↾s 𝑈) = ∅ | |
24 | 22, 23 | eqtrdi 2784 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐺 = ∅) |
25 | 24 | fveq2d 6901 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invg‘𝐺) = (invg‘∅)) |
26 | 19, 25 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
27 | 12, 26 | pm2.61i 182 | . 2 ⊢ (invr‘𝑅) = (invg‘𝐺) |
28 | 1, 27 | eqtri 2756 | 1 ⊢ 𝐼 = (invg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∅c0 4323 Fn wfn 6543 ‘cfv 6548 (class class class)co 7420 ↾s cress 17209 invgcminusg 18891 mulGrpcmgp 20074 Unitcui 20294 invrcinvr 20326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-1cn 11197 ax-addcl 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12244 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-minusg 18894 df-invr 20327 |
This theorem is referenced by: unitinvcl 20329 unitinvinv 20330 unitlinv 20332 unitrinv 20333 rdivmuldivd 20352 invrpropd 20357 subrgugrp 20530 cntzsdrg 20690 cnmsubglem 21363 psgninv 21514 invrvald 22591 invrcn2 24097 nrginvrcn 24622 nrgtdrg 24623 sum2dchr 27220 ringinvval 32956 dvrcan5 32957 |
Copyright terms: Public domain | W3C validator |