![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prssi | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg 4818 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
2 | 1 | ibi 267 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ⊆ wss 3945 {cpr 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-un 3950 df-in 3952 df-ss 3962 df-sn 4625 df-pr 4627 |
This theorem is referenced by: prssd 4821 tpssi 4835 fr2nr 5650 fprb 7200 f1ofvswap 7309 ordunel 7824 rex2dom 9264 1sdomOLD 9267 dfac2b 10147 tskpr 10787 m1expcl2 14076 m1expcl 14077 wrdlen2i 14919 gcdcllem3 16469 lcmfpr 16591 mreincl 17572 acsfn2 17636 ipole 18519 pmtr3ncom 19423 subrngin 20491 subrgin 20528 lssincl 20842 lspvadd 20974 cnmsgnbas 21503 cnmsgngrp 21504 psgninv 21507 zrhpsgnmhm 21509 mdetunilem7 22513 unopn 22798 incld 22940 indiscld 22988 leordtval2 23109 ovolioo 25490 i1f1 25612 aannenlem2 26257 upgrbi 28899 umgrbi 28907 frgr3vlem2 30077 4cycl2v2nb 30092 sshjval3 31157 pr01ssre 32581 psgnid 32812 pmtrto1cl 32814 cnmsgn0g 32861 altgnsg 32864 mdetpmtr1 33418 mdetpmtr12 33420 esumsnf 33677 prsiga 33744 difelsiga 33746 measssd 33828 carsgsigalem 33929 carsgclctun 33935 pmeasmono 33938 eulerpartlemgs2 33994 eulerpartlemn 33995 probun 34033 signswch 34187 signsvfn 34208 signlem0 34213 breprexpnat 34260 kur14lem1 34810 ssoninhaus 35926 poimirlem15 37102 inidl 37497 pmapmeet 39240 diameetN 40523 dihmeetcN 40769 dihmeet 40810 dvh4dimlem 40910 dvhdimlem 40911 dvh4dimN 40914 dvh3dim3N 40916 lcfrlem23 41032 lcfrlem25 41034 lcfrlem35 41044 mapdindp2 41188 lspindp5 41237 brfvrcld 43115 corclrcl 43131 corcltrcl 43163 ibliooicc 45353 fourierdlem51 45539 fourierdlem64 45552 fourierdlem102 45590 fourierdlem114 45602 sge0sn 45761 ovnsubadd2lem 46027 sprvalpw 46814 prprvalpw 46849 perfectALTVlem2 47056 nnsum3primesgbe 47126 uspgrimprop 47165 isuspgrimlem 47166 fprmappr 47403 zlmodzxzel 47413 zlmodzxzldeplem1 47562 2arymaptfo 47721 prelrrx2 47780 line2x 47821 line2y 47822 onsetreclem2 48131 |
Copyright terms: Public domain | W3C validator |