Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corcltrcl Structured version   Visualization version   GIF version

Theorem corcltrcl 43092
Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.)
Assertion
Ref Expression
corcltrcl (r* ∘ t+) = t*

Proof of Theorem corcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 43029 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dftrcl3 43073 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dfrtrcl3 43086 . 2 t* = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑐𝑟𝑘))
4 prex 5428 . 2 {0, 1} ∈ V
5 nnex 12240 . 2 ℕ ∈ V
6 df-n0 12495 . . 3 0 = (ℕ ∪ {0})
7 uncom 4149 . . 3 (ℕ ∪ {0}) = ({0} ∪ ℕ)
8 df-pr 4627 . . . . 5 {0, 1} = ({0} ∪ {1})
98uneq1i 4155 . . . 4 ({0, 1} ∪ ℕ) = (({0} ∪ {1}) ∪ ℕ)
10 unass 4162 . . . 4 (({0} ∪ {1}) ∪ ℕ) = ({0} ∪ ({1} ∪ ℕ))
11 1nn 12245 . . . . . . 7 1 ∈ ℕ
12 snssi 4807 . . . . . . 7 (1 ∈ ℕ → {1} ⊆ ℕ)
1311, 12ax-mp 5 . . . . . 6 {1} ⊆ ℕ
14 ssequn1 4176 . . . . . 6 ({1} ⊆ ℕ ↔ ({1} ∪ ℕ) = ℕ)
1513, 14mpbi 229 . . . . 5 ({1} ∪ ℕ) = ℕ
1615uneq2i 4156 . . . 4 ({0} ∪ ({1} ∪ ℕ)) = ({0} ∪ ℕ)
179, 10, 163eqtrri 2760 . . 3 ({0} ∪ ℕ) = ({0, 1} ∪ ℕ)
186, 7, 173eqtri 2759 . 2 0 = ({0, 1} ∪ ℕ)
19 oveq2 7422 . . . 4 (𝑘 = 𝑖 → (𝑑𝑟𝑘) = (𝑑𝑟𝑖))
2019cbviunv 5037 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {0, 1} (𝑑𝑟𝑖)
21 ss2iun 5009 . . . 4 (∀𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) → 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
22 relexp1g 14997 . . . . . . . 8 (𝑑 ∈ V → (𝑑𝑟1) = 𝑑)
2322elv 3475 . . . . . . 7 (𝑑𝑟1) = 𝑑
24 oveq2 7422 . . . . . . . . 9 (𝑗 = 1 → (𝑑𝑟𝑗) = (𝑑𝑟1))
2524ssiun2s 5045 . . . . . . . 8 (1 ∈ ℕ → (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗))
2611, 25ax-mp 5 . . . . . . 7 (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2723, 26eqsstrri 4013 . . . . . 6 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2827a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗))
29 ovex 7447 . . . . . . 7 (𝑑𝑟𝑗) ∈ V
305, 29iunex 7966 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
3130a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V)
32 0nn0 12509 . . . . . . 7 0 ∈ ℕ0
33 1nn0 12510 . . . . . . 7 1 ∈ ℕ0
34 prssi 4820 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
3532, 33, 34mp2an 691 . . . . . 6 {0, 1} ⊆ ℕ0
3635sseli 3974 . . . . 5 (𝑖 ∈ {0, 1} → 𝑖 ∈ ℕ0)
3728, 31, 36relexpss1d 43058 . . . 4 (𝑖 ∈ {0, 1} → (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3821, 37mprg 3062 . . 3 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
3920, 38eqsstri 4012 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
40 oveq2 7422 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
4140cbviunv 5037 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
42 relexp1g 14997 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
4330, 42ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
4441, 43eqtr4i 2758 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
45 1ex 11232 . . . . 5 1 ∈ V
4645prid2 4763 . . . 4 1 ∈ {0, 1}
47 oveq2 7422 . . . . 5 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
4847ssiun2s 5045 . . . 4 (1 ∈ {0, 1} → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
4946, 48ax-mp 5 . . 3 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
5044, 49eqsstri 4012 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
51 c0ex 11230 . . . . . 6 0 ∈ V
5251prid1 4762 . . . . 5 0 ∈ {0, 1}
53 oveq2 7422 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
5453ssiun2s 5045 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5552, 54ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
56 ssid 4000 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
57 unss12 4178 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5855, 56, 57mp2an 691 . . 3 ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
59 iuneq1 5007 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
608, 59ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
61 iunxun 5091 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
62 oveq2 7422 . . . . . . 7 (𝑖 = 0 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0))
6351, 62iunxsn 5088 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0)
64 vex 3473 . . . . . . 7 𝑑 ∈ V
65 nnssnn0 12497 . . . . . . 7 ℕ ⊆ ℕ0
66 inelcm 4460 . . . . . . . 8 ((1 ∈ {0, 1} ∧ 1 ∈ ℕ) → ({0, 1} ∩ ℕ) ≠ ∅)
6746, 11, 66mp2an 691 . . . . . . 7 ({0, 1} ∩ ℕ) ≠ ∅
68 iunrelexp0 43055 . . . . . . 7 ((𝑑 ∈ V ∧ ℕ ⊆ ℕ0 ∧ ({0, 1} ∩ ℕ) ≠ ∅) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
6964, 65, 67, 68mp3an 1458 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
7063, 69eqtri 2755 . . . . 5 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
7145, 47iunxsn 5088 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
7243, 41eqtr4i 2758 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7371, 72eqtri 2755 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7470, 73uneq12i 4157 . . . 4 ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7560, 61, 743eqtri 2759 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
76 iunxun 5091 . . 3 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7758, 75, 763sstr4i 4021 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘)
781, 2, 3, 4, 5, 18, 39, 50, 77comptiunov2i 43059 1 (r* ∘ t+) = t*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  cun 3942  cin 3943  wss 3944  c0 4318  {csn 4624  {cpr 4626   ciun 4991  ccom 5676  (class class class)co 7414  0cc0 11130  1c1 11131  cn 12234  0cn0 12494  t+ctcl 14956  t*crtcl 14957  𝑟crelexp 14990  r*crcl 43025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-z 12581  df-uz 12845  df-seq 13991  df-trcl 14958  df-rtrcl 14959  df-relexp 14991  df-rcl 43026
This theorem is referenced by:  cortrcltrcl  43093  corclrtrcl  43094
  Copyright terms: Public domain W3C validator