MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss12 Structured version   Visualization version   GIF version

Theorem unss12 4178
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
Assertion
Ref Expression
unss12 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem unss12
StepHypRef Expression
1 unss1 4175 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 unss2 4177 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3991 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3942  wss 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-un 3949  df-in 3951  df-ss 3961
This theorem is referenced by:  pwssun  5567  fun  6753  f1un  6853  undomOLD  9078  finsschain  9377  trclun  14987  relexpfld  15022  mulgfval  19018  mvdco  19393  dprd2da  19992  dmdprdsplit2lem  19995  lspun  20864  mulsproplem13  28021  mulsproplem14  28022  spanuni  31347  sshhococi  31349  mthmpps  35182  pibt2  36886  mblfinlem3  37121  dochdmj1  40852  mptrcllem  43015  clcnvlem  43025  dfrcl2  43076  relexpss1d  43107  corclrcl  43109  relexp0a  43118  corcltrcl  43141  frege131d  43166
  Copyright terms: Public domain W3C validator