![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 4175 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
2 | unss2 4177 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9ss 3991 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3942 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 |
This theorem is referenced by: pwssun 5567 fun 6753 f1un 6853 undomOLD 9078 finsschain 9377 trclun 14987 relexpfld 15022 mulgfval 19018 mvdco 19393 dprd2da 19992 dmdprdsplit2lem 19995 lspun 20864 mulsproplem13 28021 mulsproplem14 28022 spanuni 31347 sshhococi 31349 mthmpps 35182 pibt2 36886 mblfinlem3 37121 dochdmj1 40852 mptrcllem 43015 clcnvlem 43025 dfrcl2 43076 relexpss1d 43107 corclrcl 43109 relexp0a 43118 corcltrcl 43141 frege131d 43166 |
Copyright terms: Public domain | W3C validator |