MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2iun Structured version   Visualization version   GIF version

Theorem ss2iun 5010
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)

Proof of Theorem ss2iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3972 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 3079 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 rexim 3083 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦𝐶))
42, 3syl 17 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑦𝐶))
5 eliun 4996 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
6 eliun 4996 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
74, 5, 63imtr4g 296 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
87ssrdv 3985 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wral 3057  wrex 3066  wss 3945   ciun 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-v 3472  df-in 3952  df-ss 3962  df-iun 4994
This theorem is referenced by:  iuneq2  5011  abnexg  7753  oawordri  8565  omwordri  8587  oewordri  8607  oeworde  8608  r1val1  9804  cfslb2n  10286  imasaddvallem  17505  dprdss  19980  tgcmp  23299  txcmplem1  23539  txcmplem2  23540  xkococnlem  23557  alexsubALT  23949  ptcmplem3  23952  metnrmlem2  24770  uniiccvol  25503  dvfval  25820  gsumpart  32764  bnj1145  34619  bnj1136  34623  filnetlem3  35859  poimirlem32  37120  sstotbnd2  37242  equivtotbnd  37246  trclrelexplem  43132  corcltrcl  43160  cotrclrcl  43163  ovolval5lem2  46032  ovolval5lem3  46033  smflimsuplem7  46205
  Copyright terms: Public domain W3C validator